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This planner abstract describes the Scorpion Maidu (or
simply Maidu) planner.1 Scorpion Maidu is built on top of
the Scorpion planning system (Seipp, Keller, and Helmert
2020), which is an extension of Fast Downward (Helmert
2006). Maidu participated in the satisficing and the agile
tracks of IPC 2023. It extends Scorpion with a novel variant
of width-based search algorithms (Lipovetzky and Geffner
2012, 2014, 2017). Maidu uses a different sequential port-
folio for each track, combining the new width search al-
gorithms with the configurations used by Fast Downward
Stone Soup 2018 (Seipp and Röger 2018).

Moreover, Maidu replaces the Fast Downward grounder
(Helmert 2009) with the new grounder by Corrêa et al.
(2023) that uses gringo (Gebser et al. 2011; Kaminski and
Schaub 2021).

In this abstract, we only list the new algorithms imple-
mented in Scorpion Maidu, and the settings we used for each
track. For a detailed description of the underlying algorithms
we refer to the original papers cited below.

New Width-Based Search Algorithms
Width-based search (Lipovetzky and Geffner 2012) is based
on the concept of novelty: the search is guided towards states
that have information not seen before. In classical planning,
novelty is computed by tracking which tuples of atoms have
been encountered in previous states. The novelty of a state
is the size of the smallest tuple of atoms not seen before. As
checking and storing all possible tuple sizes is impractical,
width-based search algorithms usually track only tuples of
size one (single atoms) and two (pairs of atoms).

In general, width-based search gives a good exploration-
exploitation balance while still being cheap to compute.
In fact, planners based on width search (Francès et al.
2018) performed very well in the last IPC: LAPKT-DUAL-
BFWS achieved second place on the satisficing track, while
LAPKT-BFWS-Preference won the agile track.

We introduce new width-based search algorithms based
on the idea of forgetting. The rough idea is to forget which
tuples have already been achieved from time to time. More
precisely, whenever the search makes progress (according to
some metric orthogonal to novelty, such as heuristic value or

1Maidu is the name of a “new” species of scorpion found in
northern California (Savary and Bryson Jr. 2016).

f -value), we forget all previously achieved tuples, and start
our tracking of tuples from scratch.

Our idea is different from the novelty measures based
on partition functions of the search space (Lipovetzky and
Geffner 2017; Francès et al. 2017, 2018). Using partition
functions, novel tuples are tracked based on the partition
(e.g., f -value) where they occur. In our algorithm, we do
not discriminate the partition where a tuple was first seen,
but every time we make progress (in some sense, reach a
new partition of the search space) we forget all previous tu-
ples.

We also introduce new ways to implement open lists, try-
ing to create a synergy with our idea of forgetting. It is
not useful to forget previous information about novel tu-
ples if the open list is still flooded with very old states.
To deal with this, we implemented two different ways to
reset the open list once progress is made. First, the more
“aggressive” variant simply clears the open list when the
search makes progress. Second, in a milder variant, we use
a bucket-based queue to implement the open list. Once the
search makes progress, the states in the queue are simply
moved one bucket back. In this way, new states are inserted
ahead of the older ones, even if they have same the heuristic
(or novelty) value.

Satisficing Track
The satisficing track has a time limit of 30 minutes, and a
memory limit of 8 GiB. In this track, the scores are based
not only on whether a plan was found or not, but also on
the quality of this plan. To learn our sequential portfolio, we
used the Stone Soup algorithm (Helmert et al. 2011; Röger,
Pommerening, and Seipp 2014; Seipp and Röger 2018). We
refer to these planner abstracts and the Stone Soup workshop
paper (Helmert, Röger, and Karpas 2011) for an explanation
of how the Stone Soup algorithm works. The learned port-
folio uses 20 configurations. It had a total score of 2119.7,
while the best single configuration scored only 1574.0. (See
the original paper for an interpretation of the scores.)

As mentioned before, we replaced Fast Downward’s
grounder (Helmert 2009) used in Scorpion with gringo
(Gebser et al. 2011) as done by Corrêa et al. (2023). We also
use the h2 preprocessor (Alcázar and Torralba 2015) as a
preprocessing step with a time limit of 3 minutes.



Agile Track
The agile track has a time limit of 5 minutes, and a memory
limit of 8 GiB. The scores are solely based on how long it
takes a planner to find a plan. To learn our sequential portfo-
lio for this track, we used the Greedy Offline Approximation
algorithm by Streeter and Smith (2008). Again, we refer to
the original paper and the Fast Downward Remix planner
abstract (Seipp 2018) for details.

In contrast to the satisficing track, we do not use the h2

preprocessor in the agile track. Furthermore, we also disable
the default invariant synthesis (Helmert 2009). However, we
still replace the Fast Downward grounder with gringo.
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