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Abstract

ComplementaryPDB is a planner that uses heuristic
search via Symbolic Pattern Databases (PDBs) and uses
a greedy pattern selection algorithm – Partial Gamer
– combined with pattern collections from bin-packing
pattern selection algorithms. For more information on
this method, we direct the reader to the main paper de-
scribing this method [Moraru et al. 2019].

Introduction
The automated generation of search heuristics is one of the
holy grails in AI, and goes back to early work of Gaschnik
[Gaschnig 1979a], Pearl [Pearl 1985], and Prieditis [Pred-
itis 1993b]. In most cases, lower bound heuristics are prob-
lem relaxations: each plan in the original state space maps
to a shorter one in some corresponding abstract one. In the
worst case, searching the abstract state spaces at every given
search nodes exceeds the time of blindly searching the con-
crete search space [Valtorta 1984a].

With pattern database heuristic (PDBs), all efforts in
searching the abstract state space are spent prior to the plan
search, so that these computations amortize through multiple
lookups. The ComplementaryPDB planner bases its search
on the PDB heuristic, combining the work from [Franco
et al. 2017a] and [Moraru et al. 2019]. It is an evolution of
the Complementary planners submitted at the 9th Interna-
tional Planner Competition.

In this planner abstract, we will briefly describe Pattern
Databases. For more information on this method, we direct
the reader to the main paper describing this method [Moraru
et al. 2019]. The results, evaluation and discussion sections
will be added after the full results of the competition will be
made public.

Pattern Databases
Initial results of Culberson and Schaeffer [Culberson and
Schaeffer 1998a] in sliding-tile puzzles, where the concept
of a pattern is a selection of tiles, quickly carried over to a
number of combinatorial search domains, and helped to opti-
mally solve random instances of the Rubik’s cube, with non-
pattern labels being removed [Korf 1997]. When shifting
from breadth-first to shortest-path search, the exploration of

the abstract state-space can be extended to include action
costs.

The combination of several databases into one, however,
is tricky [Haslum et al. 2007a]. While the maximum of two
PDBs always yields a lower bound, the sum usually does
not. Korf and Felner [Korf and Felner 2002] showed that
with a certain selection of disjoint (or additive) patterns,
the values in different PDBs can be added while preserv-
ing admissibility. Holte et al. [Holte et al. 2004a] indi-
cated that several smaller PDBs may outperform one large
PDB. The notion of a pattern has been generalized to pro-
duction systems in vector notation [Holte and Hernádvölgyi
1999], while the automated pattern selection process for the
construction of PDBs goes back to the work of Edelkamp
[Edelkamp 2006].

Many planning problems can be translated into state
spaces of finite domain variables [Helmert 2004], where a
selection of variables (pattern) influences both states and op-
erators. For disjoint patterns, an operator must distribute its
original cost, if present in several abstractions [Katz and
Domshlak 2008; Yang et al. 2008].

During the PDB construction process, the memory de-
mands of the abstract state space sizes may exceed the avail-
able resources. To handle large memory requirements, sym-
bolic PDBs succinctly represent state sets as binary decision
diagrams [Edelkamp 2002a]. However, there are an expo-
nential number of patterns, not counting alternative abstrac-
tion and cost partitioning methods. Hence, the automated
construction of informative PDB heuristics remains a com-
binatorial challenge. Hill-climbing strategies have been pro-
posed [Haslum et al. 2007a], as well as more general op-
timization schemes such as genetic algorithms [Edelkamp
2006; Franco et al. 2017a]. The biggest area of research in
this area remains the quality evaluation of a PDB (in terms
of the heuristic values for the concrete state space) which
can only be estimated. Usually, this involves generating the
PDBs and evaluating them [Edelkamp 2014; Korf 1997].
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