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Linköping University, Linköping, Sweden
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This planner abstract describes an optimal classical plan-
ner called Odin. Odin uses A? search (Hart, Nilsson, and
Raphael 1968) with an admissible heuristic (Pearl 1984)
based on abstraction heuristics and saturated transition cost
partitioning (Keller et al. 2016) to find optimal plans. Odin’s
main strength is in tasks where optimal plans contain the
same actions multiple times, which is often the case in trans-
portation domains.

Introduction
Odin is an optimal classical planner and implements a new
version of our work on subset-saturated transition cost par-
titioning (Drexler, Speck, and Mattmüller 2020; Drexler,
Seipp, and Speck 2021). The planner is built on top of
Fast Downward (Helmert 2006) and Scorpion (Seipp and
Helmert 2018) and runs A∗ (Hart, Nilsson, and Raphael
1968) with two different abstraction heuristics: 1. Cartesian
abstraction heuristics of goal and landmark diversification
(Seipp and Helmert 2018) with the batch refinement strategy
of Speck and Seipp (2022) and 2. Pattern databases (Haslum
et al. 2007) for systematic patterns for saturated cost parti-
tioning.

Saturated Transition Cost Partitioning
Saturated transition cost partitioning is a method for admis-
sibly combining the information of a collection of abstrac-
tion heuristics (Keller et al. 2016; Drexler, Seipp, and Speck
2021). Given an ordered set of abstraction heuristics, it as-
signs to each heuristic a fraction of the remaining costs to
preserve its heuristic estimates, and leaves the remaining
costs for subsequent heuristics.

The remaining costs are represented as a transition cost
function tcf : S ×O → R that maps state-operator pairs (or
transitions) to real-valued costs. Since the number of transi-
tions is exponential in the size of the input task, the perfor-
mance of the method depends heavily on a compact repre-
sentation of tcf . We use binary decision diagrams (BDDs)
(Bryant 1986) from the CUDD library (Somenzi 2015) to
compactly represent sets of states associated with the same
cost value.

A special case of a transition cost function is an operator
cost function ocf : O → R, which maps operators to real-
valued costs. Odin uses operator cost functions as a fallback

solution when using transition cost functions is too time or
memory intensive. More precisely, we use transition cost
functions when the number of transitions in an abstraction
heuristic is less than 40000.

The quality of a saturated cost partitioning heuristic de-
pends heavily on the order of the heuristics. Therefore,
saturated cost partitioning considers a collection of orders
and evaluates its heuristic estimate to the maximum of the
heuristic estimates over all orders. Since orders are opti-
mized for a particular state, we compute new orders in an
online manner during the search (Seipp 2021).

Keeping the heuristic estimates of all states is sometimes
wasteful. Therefore, we preserve the heuristic estimates of
only those states that are within a fixed perimeter of the goal.
The perimeter is the distance from the initial state to a goal
in the (Seipp and Helmert 2019) abstraction. To make sub-
traction of transition cost functions more efficient, we also
subtract no costs for transitions to unsolvable states.

Operator Pruning Techniques
We use two operator pruning techniques, one as prepro-
cessing and one during the search. As preprocessing, after
grounding the input task, we run to apply h2 preprocessor of
Alcázar and Torralba (2015), which prunes spurious actions
and simplifies the task. During the search we use strong stub-
born set pruning (Alkhazraji et al. 2012; Wehrle and Helmert
2014; Röger et al. 2020). However, since the effectiveness
of strong stubborn set pruning depends strongly on the do-
main and sometimes the computation does not pay off, we
disabled pruning if the fraction of pruned states is less than
20% of the total successor states after 1000 expansions.

Configurations
Odin uses a different configuration depending on the PDDL
language features that are present after grounding and sim-
plifying the task.

No conditional effects and no axioms Odin runs satu-
rated transition cost partitioning on CARTESIAN and SYS-
SCP abstraction heuristics.

Conditional effects and no axioms Odin runs the Scor-
pion planner’s saturated operator cost partitioning imple-
mentation on the SYS-SCP abstraction heuristic. In princi-
ple, Odin can be extended to work with conditional effects,



but it does not work out of the box because conditional ef-
fects introduce an additional level of state dependency.

Axioms Odin runs Dijkstra’s algorithm (Dijkstra 1959).
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