
Grounding Schematic Representation with GRINGO for Width-based Search

1 Anubhav Singh, 1 Nir Lipovetzky, 2 Miquel Ramirez, 3 Javier Segovia-Aguas 4 Guillem Francès
1 School of Computing and Information Systems, University of Melbourne, Australia

2 Electrical and Electronic Engineering, University of Melbourne, Australia
3 Dept. Information and Communication Technologies, Universitat Pompeu Fabra, Spain

4 Independent Researcher
anubhavs@student.unimelb.edu.au, {nir.lipovetzky, miquel.ramirez}@unimelb.edu.au, javier.segovia@upf.edu,

guillem.frances@gmail.com

Abstract

This short paper describes the main components in a width-
based planner that relies on compilations of the problem of
efficiently grounding action schemas to that of enumerating
the stable models of an Answer Set Program (ASP). We ob-
serve that this “pre-processing” component, very often over-
looked, is of significant importance to analyze the behavior
of planning algorithms that rely on grounded representations
of planning problem instances.

Introduction

Lifted representations of planning problems, like PDDL
(Ghallab et al. 1998), allow the use of first-order logic vari-
ables to compactly represent actions and fluents. However,
most planners, including width-based planners, work only
on grounded representations that require to substitute the
first-order logic variables by type consistent constants. A
trivial substitution mechanism would generate a ground rep-
resentation that is exponential on the arity of actions and
predicates (Helmert 2009). The size of the ground repre-
sentation directly impacts the efficiency of the planners,
due to the overheads following from the management and
processing of large number of ground actions and fluents.
Hence, state-of-the-art planners that work on ground rep-
resentations use some method that tries to reduce the size
of the grounding. The grounder available in the TARSKI
library (Francès, Ramirez, and Collaborators 2018) gener-
ates a logic program (Brewka, Eiter, and Truszczyński 2011)
and uses it to over-approximate the set of reachable ac-
tions, based on the compilations defined in Helmert (2006).
However, in contrast with the approach taken by the FAST-
DOWNWARD grounder, TARSKI uses an off-the-shelf solver
(GRINGO) (Gebser, Schaub, and Thiele 2007) that grounds
a logic program whose answer set captures the set of all
applicable actions in the delete-free relaxation (Perri and
Scarcello 2003; Helmert 2006). We believe that the gener-
ally more efficient grounding of action schemas based on
GRINGO gives our planner an edge in the agile track, which
has a time limit of 300s.

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Ground representations by Tarski for
Sequential BFWS(f5)

The planner uses an integration of light-weight automated
planning toolkit (LAPKT) (Ramirez, Lipovetzky, and Muise
2015) with the Tarski modeling library (Francès, Ramirez,
and Collaborators 2018) to generate the ground representa-
tion of a planning problem. After which, the planner uses
a sequential BFWS(f5) configuration of the Approximate
Novelty Search (Singh et al. 2021) to solve the problem
instance. This configuration is built with the agile track in
mind, where the efficiency of pre-processing steps, includ-
ing parsing and grounding actually matters. This gives more
time to the sequential BFWS(f5) algorithm potentially, en-
abling it to tap into the search space associated with higher
novelty bounds.

Empirical Analysis 1

The International Planning Competition 2023 put forward
many challenging domains with varying characteristics - the
hardness of grounding, the size of the domain theory, and
the complex system of dependencies between the fluents
that represent states in feasible plans. Many instances were
especially difficult for the parsers and grounders - the pre-
processing components in planners that take the grounded
representation of the planning instances as input. In this sec-
tion, we compare the performance of the grounder available
in the TARSKI library, which uses an off-the-shelf solver
(GRINGO), against the FAST-DOWNWARD Grounder1.

Table 1 helps us understand the performance based on
which particular constraint, either time or memory limits,
stresses out one grounder more quickly than the other. The
FAST-DOWNWARD grounder exceeded time and memory
limits with equal frequency and could not ground 14 in-
stances. GRINGO, on the other hand, grounded more in-
stances than FAST-DOWNWARD giving the planner an edge

1The TARSKI grounder encountered failure on many instances
of Folding, Labyrinth, and Recharging Robots. We could not repli-
cate the issues, which was preventing us from comparing the
performance of the FAST-DOWNWARD and TARSKI(GRINGO)
grounders using the IPC 2023 results. Hence, we redid the experi-
ments on the three domains for both FD and Tarski Grounders. We
executed the experiments on a server using Intel Xeon Processors
(2 GHz) with 300 sec and 8 GB time and memory limit.



Folding Labyrinth Quantum L. Recharging. R. Ricochet. R. Rubik’s C. Slitherlink
lm% 10 10 5 0 0 0 20 0 0 0 0 0 0 0
lt% 15 0 20 0 0 0 0 0 0 0 0 0 0 0
sm% 15 30 0 0 0 0 0 10 0 0 0 0 10 15
st% 40 40 20 30 0 0 30 35 30 20 80 75 75 70
s% 20 20 55 70 100 100 50 55 70 80 20 25 15 15

0

20

40

60

80

100
FD FD FD FD FD FD FDFD FD FD FD FD FD FDFD FD FD FD FD FD FDFD FD FD FD FD FD FDFD FD FD FD FD FD FDTARSKI TARSKI TARSKI TARSKI TARSKI TARSKI TARSKITARSKI TARSKI TARSKI TARSKI TARSKI TARSKI TARSKITARSKI TARSKI TARSKI TARSKI TARSKI TARSKI TARSKITARSKI TARSKI TARSKI TARSKI TARSKI TARSKI TARSKITARSKI TARSKI TARSKI TARSKI TARSKI TARSKI TARSKI

Figure 1: Plot showing the performance profile of the two Approximate Novelty Search planners using FAST-DOWNWARD(FD)
and TARSKI(GRINGO) grounders. s% represents the percentage of solved instances, and the exit codes of unsolved instances
are captured as - load memouts(lm%), load timeouts(lt%), search memouts(sm%), search timeouts (st%), where ”load” refer to
the preprocessing phase of parsing and grounding.

TARSKI
FD Success Timeout Memout

126 7 7

Success 138 126 6 6
Timeout 0 0 0 0
Memout 2 0 1 1

Table 1: A pairwise comparison of TARSKI and FAST-
DOWNWARD(FD) grounders, showing the count of in-
stances with the same(diagonal elements) or different(non-
diagonal element) exit status - grounding success and fail-
ures, including memouts and timeouts. The individual pro-
files of the two grounders are shown in different colors.

on at least 12 problems. While grounding more instances
does not equate to solving more, it certainly improves the
odds. In addition to being able to ground more instances,
Figure 2 shows a clear runtime advantage of using GRINGO.
Here, we observe that it could ground many problems with
less than four times runtime in a clear win for the TARSKI’s
approach to grounding. This observation solidifies our belief
that grounding using GRINGO is generally more efficient.

We conclude by looking at Figure 1, which presents the
overall performance profiles, including search performance,
of the two Approximate Novelty Search planners in the Ag-
ile Track. We observe that the efficient grounding of TARSKI
allows us to solve three more instances in Labyrinth, which
is a hard-to-ground instance, and a total of seven additional
problems overall. We believe that the 10% improvement in
coverage, from 66 to 73, by using a more efficient grounding
method based on GRINGO, is significant.

Conclusion
The results of our planner in the International Planning
Competition 2023 confirm the superiority of using off-the-

0 50 100 150 200
FAST-DOWNWARD,Time (in seconds)

0

25

50

75

100

125

150

175

200

TA
R

S
K

I,
Ti

m
e

(in
se

co
nd

s)

Planning instance

Figure 2: A pairwise comparison of the parsing and
grounding times of the TARSKI(GRINGO) and FAST-
DOWNWARD(FD) grounders.

shelf ASP solvers for grounding the logic program for-
mulated by Helmert (2006). These results also show that
grounding is a critical bottleneck for classical planning
methods. Managing the intractability, in general, of ground-
ing with scalable algorithms provides a significant edge in
the ever-so-more competitive planning competitions. The
development of new methods for grounding that scale up and
are better integrated with SAT and heuristic search methods
for planning is a problem that has long been neglected until
very recently (Corrêa et al. 2020; Höller and Behnke 2022;
Singh et al. 2023) and requires attention.



References
Brewka, G.; Eiter, T.; and Truszczyński, M. 2011. Answer
set programming at a glance. Communications of the ACM
54(12): 92–103.
Corrêa, A. B.; Pommerening, F.; Helmert, M.; and Frances,
G. 2020. Lifted successor generation using query optimiza-
tion techniques. In Int’l Conference on Automated Planning
and Scheduling (ICAPS).
Francès, G.; Ramirez, M.; and Collaborators. 2018. Tarski:
An AI Planning Modeling Framework. https://github.com/
aig-upf/tarski.
Gebser, M.; Schaub, T.; and Thiele, S. 2007. Gringo: A new
grounder for answer set programming. In Proc. of the Int’l
Conference on Logic Programming and Nonmonotonic Rea-
soning (LPNMR), 266–271. Springer.
Ghallab, M.; Howe, A.; Knoblock, C.; McDermott, D.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL: The
Planning Domain Definition Language.
Helmert, M. 2006. The Fast Downward Planning Sys-
tem. Journal of Artificial Intelligence Research (JAIR) 26:
191–246.
Helmert, M. 2009. Concise finite-domain representations for
PDDL planning tasks. Artificial Intelligence Journal (AIJ)
173(5–6): 503–535.
Höller, D.; and Behnke, G. 2022. Encoding Lifted Classical
Planning in Propositional Logic. In Proceedings of the Inter-
national Conference on Automated Planning and Schedul-
ing, volume 32, 134–144.
Perri, S.; and Scarcello, F. 2003. Advanced Backjump-
ing Techniques for Rule Instantiations. In APPIA-GULP-
PRODE, 238–251. Citeseer.
Ramirez, M.; Lipovetzky, N.; and Muise, C. 2015.
Lightweight Automated Planning ToolKiT. http://lapkt.org/.
Accessed: 2020.
Singh, A.; Lipovetzky, N.; Ramirez, M.; and Segovia-Aguas,
J. 2021. Approximate novelty search. In Int’l Conference on
Automated Planning and Scheduling (ICAPS), volume 31,
349–357.
Singh, A.; Ramirez, M.; Lipovetzky, N.; and Stuckey, P. J.
2023. Lifted Sequential Planning with Lazy Constraint Gen-
eration Solvers. arXiv preprint arXiv:2307.08242 .


