
Grounding Schematic Representation with GRINGO for Width-based Search

1 Anubhav Singh, 1 Nir Lipovetzky, 2 Miquel Ramirez, 3 Javier Segovia-Aguas 4 Guillem Francès
1 School of Computing and Information Systems, University of Melbourne, Australia

2 Electrical and Electronic Engineering, University of Melbourne, Australia
3 Dept. Information and Communication Technologies, Universitat Pompeu Fabra, Spain

4 Independent Researcher
anubhavs@student.unimelb.edu.au, {nir.lipovetzky, miquel.ramirez}@unimelb.edu.au, javier.segovia@upf.edu,

guillem.frances@gmail.com

Abstract

This short paper describes the main components in a width-
based planner that relies on compilations of the problem of
efficiently grounding action schemas to that of enumerating
the stable models of an Answer Set Program (ASP). We ob-
serve that this “pre-processing” component, very often over-
looked, is of significant importance to analyze the behavior
of planning algorithms that rely on grounded representations
of planning problem instances.

Introduction

Lifted representations of planning problems, like PDDL
(Ghallab et al. 1998), allow the use of first-order logic vari-
ables to compactly represent actions and fluents. However,
most planners, including width-based planners, work only
on grounded representations that require to substitute the
first-order logic variables by type consistent constants. A
trivial substitution mechanism would generate a ground rep-
resentation that is exponential on the arity of actions and
predicates (Helmert 2009). The size of the ground repre-
sentation directly impacts the efficiency of the planners,
due to the overheads following from the management and
processing of large number of ground actions and fluents.
Hence, state-of-the-art planners that work on ground rep-
resentations use some method that tries to reduce the size
of the grounding. The grounder available in the TARSKI
library (Francès, Ramirez, and Collaborators 2018) gener-
ates a logic program (Brewka, Eiter, and Truszczyński 2011)
and uses it to over-approximate the set of reachable ac-
tions, based on the compilations defined in Helmert (2006).
However, in contrast with the approach taken by the FAST-
DOWNWARD grounder, TARSKI uses an off-the-shelf solver
(GRINGO) (Gebser, Schaub, and Thiele 2007) that grounds
a logic program whose answer set captures the set of all
applicable actions in the delete-free relaxation (Perri and
Scarcello 2003; Helmert 2006). We believe that the gener-
ally more efficient grounding of action schemas based on
GRINGO gives our planner an edge in the agile track, which
has a time limit of 300s.

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Ground representations by Tarski for
Sequential BFWS(f5)

The planner uses an integration of light-weight automated
planning toolkit (LAPKT) (Ramirez, Lipovetzky, and Muise
2015) with the Tarski modeling library (Francès, Ramirez,
and Collaborators 2018) to generate the ground representa-
tion of a planning problem. After which, the planner uses
a sequential BFWS(f5) configuration of the Approximate
Novelty Search (Singh et al. 2021) to solve the problem
instance. This configuration is built with the agile track in
mind, where the efficiency of pre-processing steps includ-
ing parsing and grounding actually matters. This gives more
time to the sequential BFWS(f5) algorithm potentially en-
abling it to tap into the search space associated with higher
novelty bounds.

References
Brewka, G.; Eiter, T.; and Truszczyński, M. 2011. Answer
set programming at a glance. Communications of the ACM
54(12): 92–103.

Francès, G.; Ramirez, M.; and Collaborators. 2018. Tarski:
An AI Planning Modeling Framework. https://github.com/
aig-upf/tarski.

Gebser, M.; Schaub, T.; and Thiele, S. 2007. Gringo: A new
grounder for answer set programming. In Proc. of the Int’l
Conference on Logic Programming and Nonmonotonic Rea-
soning (LPNMR), 266–271. Springer.

Ghallab, M.; Howe, A.; Knoblock, C.; McDermott, D.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL: The
Planning Domain Definition Language.

Helmert, M. 2006. The Fast Downward Planning Sys-
tem. Journal of Artificial Intelligence Research (JAIR) 26:
191–246.

Helmert, M. 2009. Concise finite-domain representations for
PDDL planning tasks. Artificial Intelligence Journal (AIJ)
173(5–6): 503–535.

Perri, S.; and Scarcello, F. 2003. Advanced Backjump-
ing Techniques for Rule Instantiations. In APPIA-GULP-
PRODE, 238–251. Citeseer.



Ramirez, M.; Lipovetzky, N.; and Muise, C. 2015.
Lightweight Automated Planning ToolKiT. http://lapkt.org/.
Accessed: 2020.
Singh, A.; Lipovetzky, N.; Ramirez, M.; and Segovia-Aguas,
J. 2021. Approximate novelty search. In Int’l Conference on
Automated Planning and Scheduling (ICAPS), volume 31,
349–357.


