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Fast Downward Stone Soup (Helmert, Röger, and Karpas
2011) is a sequential portfolio planner, built on top of the
Fast Downward planning system (Helmert 2006, 2009). It
participated in three previous International Planning Com-
petitions (IPC): 2011 (Helmert et al. 2011), 2014 (Röger,
Pommerening, and Seipp 2014), and 2018 (Seipp and Röger
2018). In the last IPC, Fast Downward Stone Soup was the
winner of the satisficing and the cost-bounded tracks.

In this planner abstract, we present the Fast Downward
Stone Soup portfolio submitted to the sequential optimal
and satisficing tracks of IPC 2023. After two IPCs (2014
and 2018) without participating in the optimal track, this is
the first time after 12 years that an optimal version of Fast
Downward Stone Soup enters the competition. The proce-
dure used for building the portfolios is the same as in 2011,
2014, and 2018. Therefore, we only briefly explain this pro-
cedure here and refer the reader to the original paper for
more details (Helmert, Röger, and Karpas 2011). We high-
light also the configurations used for the optimal track port-
folio, and the new additions for the satisficing track.

Building the Portfolios
The Stone Soup algorithm requires the following informa-
tion as input:

• A set of planning algorithms A. We use a different set of
Fast Downward configurations depending on the track,
which we describe below.

• A set of training instances I, for which portfolio per-
formance is optimized. We use a set of 7330 instances,
described below.

• Complete evaluation results that include, for each algo-
rithm A ∈ A and training instance I ∈ I,

– the runtime t(A, I) of the given algorithm on the given
training instance on our evaluation machines, in sec-
onds (we did not consider anytime planners), and

– the plan cost c(A, I) of the plan that was found.

We use time and memory limits of 10 minutes and 8 GiB
to generate this data. If algorithm A fails to solve instance
I within these bounds, we set t(A, I) = c(A, I) = ∞.

The procedure computes a portfolio as a mapping P :
A → N0 which assigns a time limit (possibly 0 if the al-
gorithm is not used) to each component algorithm. It is a

build-portfolio(algorithms, results, granularity, timeout):
portfolio := {A 7→ 0 | A ∈ algorithms}
repeat ⌊timeout/granularity⌋ times:

candidates := successors(portfolio, granularity)
portfolio := argmaxC∈candidates score(C, results)

portfolio := reduce(portfolio, results)
return portfolio

Figure 1: Stone Soup algorithm for building a portfolio.

simple hill-climbing search in the space of portfolios, shown
in Figure 1.

In addition to the algorithms and the evaluation results,
the algorithm takes two parameters, granularity and timeout,
both measured in seconds. The timeout is an upper bound on
the total time for the generated portfolio, which is the sum of
all component time limits. The granularity specifies the step
size with which we add time slices to the current portfolio.

The search starts from a portfolio that assigns a time limit
of 0 seconds to all algorithms. In each hill-climbing step,
it generates all possible successors of the current portfolio.
There is one successor per algorithm A, where the only dif-
ference between the current portfolio and the successor is
that the time limit of A is increased by the given granularity.

We evaluate the quality of a portfolio P by computing
its portfolio score s(P ). The portfolio score is the sum of
instance scores s(P, I) over all instances I ∈ I. The func-
tion s(P, I) is similar to the scoring function used for the
International Planning Competitions since 2008. The only
difference is that we use the best solution quality among our
algorithms as reference quality (instead of taking solutions
from other planners into account): if no algorithm in a port-
folio P solves an instance I within its allotted runtime, we
set s(P, I) = 0. Otherwise, s(P, I) = c∗I/c

P
I , where c∗I is

the lowest solution cost for I of any input algorithm A ∈ A
and cPI denotes the best solution cost among all algorithms
A ∈ A that solve the instance within their allotted runtime
P (A).

In each hill-climbing step the search chooses the succes-
sor with the highest portfolio score. Ties are broken in favor
of successors that increase the timeout of the component al-
gorithm that occurs earliest in some arbitrary total order.

The hill-climbing phase ends when all successors would



exceed the given time bound. A post-processing step reduces
the time assigned to each algorithm by the portfolio. It con-
siders the algorithms in the same arbitrary order used for
breaking ties in the hill-climbing phase and sets their time
limit to the lowest value that would still lead to the same
portfolio score.

Training Benchmark Set
As benchmarks, we used all tasks and domains from previ-
ous IPCs, from Delfi (Katz et al. 2018), and from the 22.03
Autoscale collection Torralba, Seipp, and Sievers (2021),
leading to a set of 92 domains with 7330 tasks. We used
Downward Lab (Seipp et al. 2017) to run all planners on
all benchmarks on Intel Xeon Silver 4114 2.2 GHz proces-
sors, imposing a memory limit of 8 GiB and a time limit of
30 minutes for optimal planners and 5 minutes for satisfic-
ing and agile planners. For each run, we stored its outcome
(plan found, out of memory, out of time, task not supported
by planner, error), the execution time, the maximum resi-
dent memory, and if the run found a plan, the plan length
and plan cost. This data set is online available1. As training
data for our optimal (satisficing) portfolio, we selected from
each domain the 30 tasks which are solved by the fewest op-
timal (satisficing) planners, which results in 2377 remaining
tasks.

Planning Algorithms
Satisficing Track
For the satisficing track, we collect our input planning al-
gorithms from several sources. First, we use the component
algorithms of the previous Fast Downward Stone Soup port-
folios that participated in the sequential satisficing track of
other IPCs (Helmert et al. 2011; Röger, Pommerening, and
Seipp 2014; Seipp and Röger 2018). In total, this gives us 87
different configurations.

Second, we add different combinations of hcea (Helmert
and Geffner 2008), hCG (Helmert 2006), hFF (Hoffmann
and Nebel 2001), and hLM (Richter, Westphal, and Helmert
2011) with greedy best-first search (GBFS) but using differ-
ent open-lists:

• For each one heuristic h ∈ {hcea, hCG, hFF}, we use one
configuration of (eager) GBFS with the ϵ-greedy open-
list (Röger and Helmert 2010) ordered by h. We also add
the same configurations but using lazy GBFS (Richter
and Helmert 2009).

• We use configurations using lazy GBFS alternating be-
tween three open-lists: [hFF, h, PAR(hFF, h)] where h ∈
{hcea, hCG, hLM} and PAR(hFF, h) is a Pareto open-list
using hFF and h (Röger and Helmert 2010).

• We add two other configurations using lazy GBFS: one
alternating between [ϵ-greedy(hFF), hLM] open-lists, and
one alternating between [hFF, ϵ-greedy(hLM)]. For each
of these two configurations, we also include configu-
rations with additional open-lists only containing states
generated by preferred operators.

1URL to be published

All configurations using hLM have one version using reason-
able orders and one without them.

This makes for a total of 18 new configurations. Overall,
this leaves us with 105 planner configurations as input for
the hill-climbing procedure.

Optimal Track
For the optimal track, we distinguish whether planning algo-
rithms support conditional effects or not. We use A∗ with the
following heuristics without support for conditional effects:
• the blind heuristic
• BJOLP (Domshlak et al. 2011)
• Cartesian abstractions (Seipp and Helmert 2018):

– for subtasks induced by goals and fact landmarks (one
of four different limits: 10s, 60s, 300s generation time
or 1 million state-changing transitions in all abstrac-
tions)

– for subtasks only induced by goals (1 million transi-
tions)

– for subtasks only induced by fact landmarks (1 million
transitions)

• h2 (Haslum and Geffner 2000)
• hmax (Bonet and Geffner 2001)
• pattern databases (PDBs) (Culberson and Schaeffer

1998; Edelkamp 2001), all combined in the canonical
PDB heuristic (Haslum et al. 2007), computed with the
following pattern collections:
– CEGAR with a maximum size of 1 million states in

individual PDBs and 10 million states in all PDBs,
computation time limit of 10s/60s/300s with enabling
stagnation after 2s/12s/20s, enabling blacklisting af-
ter 75% of the computation time limit or on stagna-
tion, computing wildcard plans (Rovner, Sievers, and
Helmert 2019)

– hill climbing (Haslum et al. 2007) (thus leading to
iPDB) with a computation time limit for the main loop
of the algorithm of 10s/60s/300s

– interesting patterns of size 1/2/3 (Pommerening,
Röger, and Helmert 2013)

• LM-cut (Helmert and Domshlak 2009)
• merge-and-shrink heuristics (Helmert et al. 2014; Siev-

ers and Helmert 2021) with bisimulation-based shrink-
ing (Nissim, Hoffmann, and Helmert 2011) and a size
limit of 50000 states per abstraction, exact label reduc-
tion (Sievers, Wehrle, and Helmert 2014), one of two
merge strategies: SCC-DFP or SCC-sbMIASM (Sievers,
Wehrle, and Helmert 2016), and a computation time limit
for the main loop of the algorithm of 10s/60s/300s

• operator-counting heuristics (Pommerening et al. 2014)
with different types of constraints:
– post-hoc optimization constraints over interesting pat-

terns (size 1/2/3) (Pommerening, Röger, and Helmert
2013)

– delete relaxation constraints, leading to h+ (exact IP
model and LP relaxation) (Imai and Fukunaga 2015)



– state equation constraints (Pommerening et al. 2014)
– state equation constraints and LM-cut constraints

(Pommerening et al. 2014)
– state equation constraints, LM-cut constraints, and

delete relaxation constraints (LP relaxation) (Pom-
merening et al. 2014)

• diverse potential heuristics and potential heuristics opti-
mized for the initial state or all states (Seipp, Pommeren-
ing, and Helmert 2015)

This makes for a total of 37 planning algorithms. All
of them prune operators during successor generation using
atom-centric stubborn sets (Röger et al. 2020). However, this
feature is turned off after the first 1000 expansions if less
than 20% of operators are pruned.

For tasks with conditional effects, we cannot use stubborn
sets pruning and we only use those of the above algorithms
that support conditional effects: blind, h2, hmax, all merge-
and-shrink variants. This is a total of 11 planning algorithms.

Resulting Portfolios
The resulting satisficing portfolio uses 41 of the 144 possible
algorithms, running them for 8–135 seconds. On the train-
ing set, the portfolio achieves an overall score of 1999.93,
which is much better than the best component algorithm
with a score of 1650.40. If we had an oracle to select the
best algorithm (getting allotted the full 1800 seconds) for
each instance, we could reach a total score of 2073.

Executing Sequential Portfolios
In the previous sections, we assumed that a portfolio simply
assigns a runtime to each algorithm, leaving their sequential
order unspecified. With the simplifying assumption that all
planner runs use the full assigned time and do not commu-
nicate information, the order is indeed irrelevant. In reality
the situation is more complex.

First, the Fast Downward planner uses a preprocessing
phase that we need to run once before we start the port-
folio, so we do not have the full 1800 seconds available.2
Therefore, we treat per-algorithm time limits defined by the
portfolio as relative, rather than absolute values: whenever
we start an algorithm, we compute the total allotted time of
this and all following algorithms and scale it to the actually
remaining computation time. We then assign the respective
scaled time to the run. As a result, the last algorithm is al-
lowed to use all of the remaining time.

Second, in the satisficing setting we would like to use the
cost of a plan found by one algorithm to prune the search
of subsequent planner runs (in the optimal track we stop af-
ter finding the first plan). We therefore use the best solution
found so far for pruning based on g values: only paths in the
state space that are cheaper than the best solution found so
far are pursued.

Third, planner runs often terminate early, e.g., because
they run out of memory or find a plan. Since we would like

2The preprocessing phase consists of converting the input
PDDL task (Fox and Long 2003) into a SAS+ task (Bäckström
and Nebel 1995) with the Fast Downward translator component.

to use the remaining time to continue the search for a plan or
improve the solution quality, we sort the algorithms by their
coverage scores in decreasing order, hence beginning with
algorithms likely to succeed quickly.
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