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This planner abstract describes “Scorpion 2023”, the
planner configuration we submitted to the sequential op-
timization track of the International Planning Competition
2023. Scorpion 2023 is implemented within the Scorpion
planning system, which is an extension of Fast Down-
ward (Helmert 2006). Like the original Scorpion configu-
ration, which participated in IPC 2018, Scorpion 2023 uses
A∗ (Hart, Nilsson, and Raphael 1968) with an admissible
heuristic (Pearl 1984) to find optimal plans. The overall
heuristic is based on component abstraction heuristics that
are combined by saturated cost partitioning (Seipp, Keller,
and Helmert 2020).1

In this abstract we only list the components of Scorpion
and the settings we used for them. For a detailed description
of the underlying algorithms we refer to Seipp, Keller, and
Helmert (2020).

Abstraction Heuristics
Depending on whether or not a given task contains condi-
tional effects, we use a different set of abstraction heuristics.

Tasks Without Conditional Effects
For tasks without conditional effects we use the combination
of the following heuristics:

• Cartesian abstraction heuristics (CART):
We consider Cartesian abstractions of the landmark and
goal task decompositions (Seipp and Helmert 2018). We
limit the total number of non-looping transitions in all ab-
stractions underlying the Cartesian heuristics by one mil-
lion.

• pattern databases selected by saturated cost partitioning
SYS-SCP algorithm (SYS-SCP):
We iteratively generate larger interesting patterns and let
saturated cost partitioning choose the ones whose projec-
tion contains non-zero goal distances under the remaining
cost function.

Tasks With Conditional Effects
For tasks with conditional effects we only use the SYS-SCP
patterns as described above.

1We chose the name “Scorpion” since it contains the letters
s(aturated) c(ost) p(artitioning) in this order.

Saturated Cost Partitioning
We combine the information contained in the compo-
nent heuristics with saturated cost partitioning (Seipp and
Helmert 2018). Given an ordered collection of heuristics,
saturated cost partitioning iteratively assigns each heuris-
tic h only the costs that h needs for justifying its estimates
and saves the remaining costs for subsequent heuristics. Dis-
tributing the operator costs among the component heuristics
in this way makes the sum of the individual heuristic values
admissible.

The quality of the resulting saturated cost partitioning
heuristic strongly depends on the order in which the com-
ponent heuristics are considered (Seipp, Keller, and Helmert
2017). Additionally, we can obtain much stronger heuris-
tics by maximizing over multiple saturated cost partition-
ing heuristics computed for different orders instead of using
a single saturated cost partitioning heuristic (Seipp, Keller,
and Helmert 2017). We therefore iteratively sample a state
(using the sampling algorithm by Haslum et al. 2007), use
a greedy algorithm for finding an initial order for the state
(more concretely, we use the static greedy ordering algo-
rithm with the q h

stolen
scoring function) and afterwards op-

timize the order with simple hill climbing in the space of
orders for at most two seconds (Seipp 2018). If the the sat-
urated cost partitioning heuristic computed for the resulting
optimized greedy order yields a higher estimate for one of a
set of 1000 sample states than all previously added orders,
we add the order to our set of orders. We limit the time for
finding orders in this way to 100 seconds.

Operator Pruning Techniques
We employ two operator pruning techniques:

• atom-centric strong stubborn sets (Röger et al. 2020):
We switch off pruning in case the fraction of pruned suc-
cessor states is less than 20% of the total successor states
after 1000 expansions.

• h2 mutexes (Alcázar and Torralba 2015):
This operator pruning method can remove irrelevant op-
erators. We invoke it after translating a given input task to
SAS+ and before starting the search component of Fast
Downward.
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