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Abstract

FSM is a learning-based planner that uses different sample
generation improvement strategies to learn a heuristic func-
tion for classical planning. The heuristic function is a neural
network trained on pairs of states and cost-to-goal estimates
generated by regression from the goal. Samples are generated
from breadth-first search, random walk, and random sampling
algorithms and post-processed to improve the cost-to-goal es-
timates. The short time for sampling and training allows FSM
to compete as a satisficing planner.

Introduction

FSM brings a learning-based model to the classic track of
the International Planning Competition (IPC) 2023. Learn-
ing heuristic functions using neural networks (NN) (Ferber
et al. 2022; O’Toole et al. 2022; Yu, Kuroiwa, and Fuku-
naga 2020) is a way to generate model-free heuristic func-
tions with competitive results when compared to logic-based
heuristics such as hFF. In particular, the FSM planner is
based on the sampling techniques proposed by Bettker et al.
(2022) implemented in the Neural Fast Downward (Ferber,
Helmert, and Hoffmann 2020b).

The planner works in three stages: sampling, training,
and searching. Sampling generates pairs of states and cost-
to-goal estimates used to learn a heuristic function. FSM
uses different sampling algorithms to achieve a good dis-
tribution of states across the state space. As post-processing,
two techniques for improving the cost-to-goal estimates are
applied, sample improvement and successor improvement.
(Sampling is discussed in detail in the next section.) Next,
the samples feed a feedforward neural network to learn a
state space-specific heuristic function. The NN takes the
state in the STRIPS representation as input and generates
the h-value that guides the greedy best-first search (GBFS)
to solve the task.

We allocate the 30-minute search time as follows: 15 min-
utes for sampling, 10 minutes for training, and 5 minutes for
the actual search. The timers between the stages are shared,
i.e., if a stage finishes before the timeout, its remaining time
is added to the next stage, so the real-time allocation varies
according to the task.

Sampling Stage
In this section, we describe four sample generation strate-
gies: two that aim to generate more representative states and
two that enhance the cost-to-goal estimates.

Sample Set
Samples are generated by regression from the goal state.
FSM planner generates N = 25000 samples (or until timed
out), where 10% breadth-first search (BFS), 70% random
walk (RW), and 20% random sampling. First, the BFS fol-
lowed by RW, where the random walk paths (rollouts) start
from the BFS leaf nodes until a regression limit L is reached.
Then, we randomly sample uniformly over the state space as
proposed by O’Toole et al. (2022). States generated by the
regression are given the rollout depth as cost-to-goal esti-
mate h, while random samples receive 1+maxi∈{1,...,N} hi.
The regression generates samples as partial states, whose
undefined values are randomly assigned (respecting the mu-
texes) at the end of the sampling stage to train the NN with
complete states.

Regression Limit
Since the cost-to-goal estimate of the samples is based on the
distance traveled from the goal state to the sampled state, the
chances (and magnitude) of the cost-to-goal estimate being
overestimated increase with the length of the rollout. Limit-
ing the rollout – and consequently, the maximum h-value of
a sample – with a fixed number is not a good option since we
do not have prior information about the task’s state space.
A short rollout may prevent sampling far-from-goal states,
while a long rollout can overestimate the cost-to-goal esti-
mates.

Therefore, we use the task-based strategy of limiting the
random walk length by the number of propositions divided
by the average number of effects on operators, i.e., L =
⌈|P|/eff⌉ where eff =

∑
o∈O | eff(o)|/|O| for propositions

set P and operators set O. This technique generates an ap-
proximate estimate of the diameter of the state space (largest
h∗ of the state space) considering that, in the worst case, we
need to set all propositions of a state to reach the goal state,
and we can set on average eff propositions per given step, so
we need to take L steps to traverse the state space.



Sample Improvement
Generating samples from multiple rollouts allows an inter-
section between them, where two samples of the same state
can have different cost-to-goal estimates. Training the NN
with different labels for the same sample can lead to incon-
sistency. SAI is a post-processing technique to assign equal
samples the minimum cost-to-goal estimate found between
them, i.e., h(s) = min{hi | s = si, i ∈ {1, . . . , N}}. Since
different partial states can generate the same complete state,
the technique is applied both while the samples are in partial
state and complete state.

Successor Improvement
The cost-to-goal estimate of sampling by regression is based
solely on the rollout it was generated in, allowing different
rollouts to sample two close states but with significantly dif-
ferent cost-to-goal estimates. While SAI improves different
samples from the same state, successor improvement (SUI)
improves based on neighboring states in state space, as fol-
lows. Consider a directed graph G = (V,A) over all sam-
pled partial states, i.e., V = {si | i ∈ {1, . . . , N}}. For ev-
ery pair of states s, t ∈ V such that for some operator o ∈ O
applicable to s we have succ(s, o) ⊆ t, we add an arc (s, t)
of length cost(o) to A. For fast subset, we keep all samples
in a trie and search for each successor in the states that are
supersets. For partial states generated by regression, by con-
struction, at least one such successor exists, except for the
goal state. We then compute the shortest paths to the goal in
graph G via the Dijkstra algorithm and update the cost-to-
goal estimates with these distances.

Learning Stage
The sample set feeds a residual neural network (He et al.
2016) to learn a state space-specific heuristic function. The
structure of the NN is proposed by Ferber, Helmert, and
Hoffmann (2020a), which has two hidden layers followed
by a residual block with two hidden layers. The input layer
has a number of neurons equal to the total propositions of
the task, while the hidden layers contain 250 neurons with
ReLU activation and He initialization (He et al. 2015). The
output is a single neuron with the predicted h-value. We use
the Adam optimizer (Kingma and Ba 2015), a learning rate
of 10−4, a mean squared error loss function, and a batch
size of 512. The data is split into 90% for the training set
and the remainder for the validation set. The NN receives
the states in a boolean representation where, for each propo-
sition of the task, the value 1 is given if the proposition is
true in the state, otherwise 0. Learning terminates by early
stopping after 25 epochs without improvement (as opposed
to 100 proposed by Bettker et al. (2022) since time is valu-
able) or when reaching the time limit, and the best epoch
model is the heuristic function in the search.

Search
We use Fast Downward (Helmert 2006) to solve tasks with
GBFS guided by the learned heuristic. All arguments remain
with their default values, except for considering unit costs
for all tasks.

Result Analysis
In the satisficing track, the planner solved 64 out of 140
tasks if we consider the domain version in which the planner
solved the most tasks (normalized or not). The planner per-
formed well in two domains, solving all tasks from Quantum
Layout and 19 tasks of Ricochet Robots. Time was the most
noticeable limiting factor. The planner failed to solve most
of the tasks of Folding, Rubik’s Cube, and Slitherlink due to
the time limit. In the agile track, the planner solved 31 out
of 140 tasks, again considering the best results for each do-
main version. For this track, the planner failed to solve tasks
almost solely due to time limits.
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