
Hapori Stone Soup
Patrick Ferber1, Michael Katz2, Jendrik Seipp3, Silvan Sievers1, Daniel Borrajo4, Isabel Cenamor,

Tomas de la Rosa, Fernando Fernandez-Rebollo4, Carlos Linares López4, Sergio Nuñez,
Alberto Pozanco, Horst Samulowitz2, Shirin Sohrabi2

1 University of Basel, Switzerland
2 IBM T.J. Watson Research Center, Yorktown Heights, USA

3 Linköping University, Sweden
4 Universidad Carlos III de Madrid, Spain

patrick.ferber@unibas.ch, michael.katz1@ibm.com, jendrik.seipp@liu.se, silvan.sievers@unibas.ch, dborrajo@ia.uc3m.es,
icenamorg@gmail.com, tomdelarosa@gmail.com, ffernand@inf.uc3m.es, clinares@inf.uc3m.es, sergio.nunez@repsol.com,

alberto.pozanco@gmail.com, samulowitz@us.ibm.com, shirin.sohrabi@gmail.com

Abstract

Hapori Stone Soup1 is a portfolio planner which participated
in the optimal and satisficing tracks of the International Plan-
ning Competition (IPC) 2023. It uses the Stone Soup algo-
rithm (Helmert, Röger, and Karpas 2011) to compute a se-
quential static portfolio over IPC 2018 planners in an offline
preprocessing phase.

Building the Portfolios
The Stone Soup algorithm requires the following informa-
tion as input:

• A set of planning algorithms A. We use a different set of
Fast Downward configurations depending on the track,
which we describe below.

• A set of training instances I, for which portfolio per-
formance is optimized. We use a set of 7330 instances,
described below.

• Complete evaluation results that include, for each algo-
rithm A ∈ A and training instance I ∈ I,

– the runtime t(A, I) of the given algorithm on the given
training instance on our evaluation machines, in sec-
onds (we did not consider anytime planners), and

– the plan cost c(A, I) of the plan that was found.

We use time and memory limits of 10 minutes and 8 GiB
to generate this data. If algorithm A fails to solve instance
I within these bounds, we set t(A, I) = c(A, I) = ∞.

The procedure computes a portfolio as a mapping P :
A → N0 which assigns a time limit (possibly 0 if the al-
gorithm is not used) to each component algorithm. It is a
simple hill-climbing search in the space of portfolios, shown
in Figure 1.

In addition to the algorithms and the evaluation results,
the algorithm takes two parameters, granularity and timeout,
both measured in seconds. The timeout is an upper bound on
the total time for the generated portfolio, which is the sum of
all component time limits. The granularity specifies the step
size with which we add time slices to the current portfolio.

1Hapori is the Maori word for community.

build-portfolio(algorithms, results, granularity, timeout):
portfolio := {A 7→ 0 | A ∈ algorithms}
repeat ⌊timeout/granularity⌋ times:

candidates := successors(portfolio, granularity)
portfolio := argmaxC∈candidates score(C, results)

portfolio := reduce(portfolio, results)
return portfolio

Figure 1: Stone Soup algorithm for building a portfolio.

The search starts from a portfolio that assigns a time limit
of 0 seconds to all algorithms. In each hill-climbing step,
it generates all possible successors of the current portfolio.
There is one successor per algorithm A, where the only dif-
ference between the current portfolio and the successor is
that the time limit of A is increased by the given granularity.

We evaluate the quality of a portfolio P by computing
its portfolio score s(P ). The portfolio score is the sum of
instance scores s(P, I) over all instances I ∈ I. The func-
tion s(P, I) is similar to the scoring function used for the
International Planning Competitions since 2008. The only
difference is that we use the best solution quality among our
algorithms as reference quality (instead of taking solutions
from other planners into account): if no algorithm in a port-
folio P solves an instance I within its allotted runtime, we
set s(P, I) = 0. Otherwise, s(P, I) = c∗I/c

P
I , where c∗I is

the lowest solution cost for I of any input algorithm A ∈ A
and cPI denotes the best solution cost among all algorithms
A ∈ A that solve the instance within their allotted runtime
P (A).

In each hill-climbing step the search chooses the succes-
sor with the highest portfolio score. Ties are broken in favor
of successors that increase the timeout of the component al-
gorithm that occurs earliest in some arbitrary total order.

The hill-climbing phase ends when all successors would
exceed the given time bound. A post-processing step reduces
the time assigned to each algorithm by the portfolio. It con-
siders the algorithms in the same arbitrary order used for
breaking ties in the hill-climbing phase and sets their time
limit to the lowest value that would still lead to the same
portfolio score.



Components and Training Data
Planners. As the pool of planners for our portfolios to
choose from, we used all planners from the IPC 2018. If an
IPC 2018 planner was already a portfolio, we used its com-
ponent planners instead. We only considered each planner
once (some portfolios included planners that were also sub-
mitted separately and several portfolios included the same
planners).

For the optimal track, we had to exclude maplan-1,
maplan-2, and MSP because they use CPLEX, and Com-
plementary1 because it generates suboptimal solutions. Fur-
thermore, the FDMS planners and Metis1 were covered by
Delfi already. This results in the following list of planners
(or their components):

• Complementary2 (Franco, Lelis, and Barley 2018)
• components of DecStar (Gnad, Shleyfman, and Hoff-

mann 2018)
• components of Delfi (Delfi1 and Delfi2 have the same

components; Katz et al., 2018b)
• Metis2 (Sievers and Katz 2018)
• Planning-PDBs (Moraru et al. 2018)
• Scorpion (Seipp 2018b)
• SymBA*1 (IPC 2014; Torralba et al., 2014)
• Symple-1 and Symple-2 (Speck, Geißer, and Mattmüller

2018)

All planners participating in the satisficing track also par-
ticipated in the agile track (except for Fast Downward Stone
Soup 2018), with an identical code base but possibly with
different configurations. We thus only have one set of plan-
ners but multiple configurations for these two tracks. We
had to exclude alien because we could not get it to run,
and freelunch-doubly-relaxed, fs-blind and fs-sim because
they have a large number of dependencies which results in
planner images too large to be included in our pool. Further-
more, IBaCoP-2018 and IBaCoP2-2018 use a large number
of planners or portfolios of which newer and stronger ver-
sions participated in IPC 2018 as standalone planners, or
which we failed to get to run, so we only cover the com-
ponent planners Jasper, Madagascar, Mercury, and Probe.
This results in the following list of planners (or their com-
ponents):

• Cerberus and Cerberus-gl (Katz 2018)
• components of DecStar (Gnad, Shleyfman, and Hoff-

mann 2018)
• components of Fast Downward Remix (Seipp 2018a)
• components of Fast Downward Stone Soup 2018 (Seipp

and Röger 2018)
• Jasper (IPC 2014; Xie, Müller, and Holte, 2014)
• LAPKT-DUAL-BFWS, LAPKT-POLYNOMIAL-

BFWS, LAPKT-DFS+, and LAPKT-BFWS-Preference
(Francès et al. 2018)

• Madagascar (IPC 2014; Rintanen, 2014)
• Mercury2014 (Katz and Hoffmann 2014)
• MERWIN (Katz et al. 2018a)

• OLCFF (Fickert and Hoffmann 2018)
• Probe (IPC 2014; Lipovetzky et al., 2014)
• Grey Planning configuration of Saarplan (Fickert et al.,

2018; rest covered by DecStar)
• Symple-1 and Symple-2 (Speck, Geißer, and Mattmüller

2018)

Benchmarks and Runtime. For training the portfolios,
we used all tasks and domains from previous IPCs, from
Delfi (Katz et al. 2018b), and from the 21.11 Autoscale col-
lection Torralba, Seipp, and Sievers (2021), leading to a set
of 92 domains with 7330 tasks. We used Downward Lab
(Seipp et al. 2017) to run all planners on all benchmarks on
AMD EPYC 7742 2.25GHz processors, imposing a mem-
ory limit of 8 GiB and a time limit of 30 minutes for optimal
planners and 5 minutes for satisficing and agile planners. For
each run, we stored its outcome (plan found, out of memory,
out of time, task not supported by planner, error), the exe-
cution time, the maximum resident memory, and if the run
found a plan, the plan length and plan cost. This data set is
online available.2 As training data for our optimal (respec-
tively satisficing/agile) portfolios, we selected from each do-
main the 30 tasks which are solved by the fewest optimal (or
satisficing/agile) planners, which results in 1926 (optimal)
and 2377 (satisficing/agile) remaining tasks.

Executing Sequential Portfolios
In the previous sections, we assumed that a portfolio simply
assigns a runtime to each algorithm, leaving their sequen-
tial order unspecified. With the simplifying assumption that
all planners use the full assigned time and do not communi-
cate with each other, the order is indeed irrelevant. In reality
the situation is more complex since we do not know upfront
how long a selected planner will really run. Therefore, we
treat per-algorithm time limits defined by the portfolio as
relative, rather than absolute values: whenever we start an
algorithm, we compute the total allotted time of this and all
following algorithms and scale it to the actually remaining
computation time. We then assign the respective scaled time
to the run. As a result, the last algorithm is allowed to use all
of the remaining time.

In the satisficing setting we would like to use the cost of
a plan found by one algorithm to prune the search of subse-
quent planner runs (in the agile setting we stop after finding
the first valid plan). However, since we use the planners as
black boxes, this is impossible in our setting.

We use the driver component of Fast Downward (Helmert
2006) which implements the above described mechanic for
running portfolios.

Acknowledgments
The success of a portfolio planner must be primarily at-
tributed to the developers of the portfolio components.
Therefore, we would like to express our gratitude to the nu-
merous authors of the components on which our portfolios
are based.

2URL to be published



References
Fickert, M.; Gnad, D.; Speicher, P.; and Hoffmann, J. 2018.
SaarPlan: Combining Saarland’s Greatest Planning Tech-
niques. In Ninth International Planning Competition (IPC-
9): Planner Abstracts, 11–16.
Fickert, M.; and Hoffmann, J. 2018. OLCFF: Online-
Learning hCFF. In Ninth International Planning Competition
(IPC-9): Planner Abstracts, 17–19.
Francès, G.; Geffner, H.; Lipovetzky, N.; and Ramiréz, M.
2018. Best-First Width Search in the IPC 2018: Complete,
Simulated, and Polynomial Variants. In Ninth International
Planning Competition (IPC-9): Planner Abstracts, 23–27.
Franco, S.; Lelis, L. H. S.; and Barley, M. 2018. The Com-
plementary2 Planner in the IPC 2018. In Ninth International
Planning Competition (IPC-9): Planner Abstracts, 32–36.
Gnad, D.; Shleyfman, A.; and Hoffmann, J. 2018. DecStar
– STAR-topology DECoupled Search at its best. In Ninth
International Planning Competition (IPC-9): Planner Ab-
stracts, 42–46.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research, 26: 191–246.
Helmert, M.; Röger, G.; and Karpas, E. 2011. Fast Down-
ward Stone Soup: A Baseline for Building Planner Portfo-
lios. In ICAPS 2011 Workshop on Planning and Learning,
28–35.
Katz, M. 2018. Cerberus: Red-Black Heuristic for Planning
Tasks with Conditional Effects Meets Novelty Heuristic and
Enchanced Mutex Detection. In Ninth International Plan-
ning Competition (IPC-9): Planner Abstracts, 47–51.
Katz, M.; and Hoffmann, J. 2014. Mercury Planner: Push-
ing the Limits of Partial Delete Relaxation. In Eighth Inter-
national Planning Competition (IPC-8): Planner Abstracts,
43–47.
Katz, M.; Lipovetzky, N.; Moshkovich, D.; and Tuisov, A.
2018a. MERWIN Planner: Mercury Enchanced With Nov-
elty Heuristic. In Ninth International Planning Competition
(IPC-9): Planner Abstracts, 53–56.
Katz, M.; Sohrabi, S.; Samulowitz, H.; and Sievers, S.
2018b. Delfi: Online Planner Selection for Cost-Optimal
Planning. In Ninth International Planning Competition
(IPC-9): Planner Abstracts, 57–64.
Lipovetzky, N.; Ramirez, M.; Muise, C.; and Geffner, H.
2014. Width and Inference Based Planners: SIW, BFS(f),
and PROBE. In Eighth International Planning Competition
(IPC-8): Planner Abstracts, 6–7.
Moraru, I.; Edelkamp, S.; Martinez, M.; and Franco, S.
2018. Planning-PDBs Planner. In Ninth International Plan-
ning Competition (IPC-9): Planner Abstracts, 69–73.
Rintanen, J. 2014. Madagascar: Scalable Planning with
SAT. In Eighth International Planning Competition (IPC-
8): Planner Abstracts, 66–70.
Seipp, J. 2018a. Fast Downward Remix. In Ninth Inter-
national Planning Competition (IPC-9): Planner Abstracts,
74–76.

Seipp, J. 2018b. Fast Downward Scorpion. In Ninth Inter-
national Planning Competition (IPC-9): Planner Abstracts,
77–79.
Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M.
2017. Downward Lab. https://doi.org/10.5281/zenodo.
790461.
Seipp, J.; and Röger, G. 2018. Fast Downward Stone Soup
2018. In Ninth International Planning Competition (IPC-9):
Planner Abstracts, 80–82.
Sievers, S.; and Katz, M. 2018. Metis 2018. In Ninth Inter-
national Planning Competition (IPC-9): Planner Abstracts,
83–84.
Speck, D.; Geißer, F.; and Mattmüller, R. 2018. SYMPLE:
Symbolic Planning based on EVMDDs. In Ninth Inter-
national Planning Competition (IPC-9): Planner Abstracts,
91–94.
Torralba, Á.; Alcázar, V.; Borrajo, D.; Kissmann, P.; and
Edelkamp, S. 2014. SymBA*: A Symbolic Bidirectional
A* Planner. In Eighth International Planning Competition
(IPC-8): Planner Abstracts, 105–109.
Torralba, Á.; Seipp, J.; and Sievers, S. 2021. Automatic In-
stance Generation for Classical Planning. In Goldman, R. P.;
Biundo, S.; and Katz, M., eds., Proceedings of the Thirty-
First International Conference on Automated Planning and
Scheduling (ICAPS 2021), 376–384. AAAI Press.
Xie, F.; Müller, M.; and Holte, R. 2014. Jasper: the art of
exploration in Greedy Best First Search. In Eighth Inter-
national Planning Competition (IPC-8): Planner Abstracts,
39–42.


