
Hapori MIPlan
Patrick Ferber1, Michael Katz2, Jendrik Seipp3, Silvan Sievers1, Daniel Borrajo4, Isabel Cenamor,

Tomas de la Rosa, Fernando Fernandez-Rebollo4, Carlos Linares López4, Sergio Nuñez,
Alberto Pozanco, Horst Samulowitz2, Shirin Sohrabi2

1 University of Basel, Switzerland
2 IBM T.J. Watson Research Center, Yorktown Heights, USA

3 Linköping University, Sweden
4 Universidad Carlos III de Madrid, Spain

patrick.ferber@unibas.ch, michael.katz1@ibm.com, jendrik.seipp@liu.se, silvan.sievers@unibas.ch, dborrajo@ia.uc3m.es,
icenamorg@gmail.com, tomdelarosa@gmail.com, ffernand@inf.uc3m.es, clinares@inf.uc3m.es, sergio.nunez@repsol.com,

alberto.pozanco@gmail.com, samulowitz@us.ibm.com, shirin.sohrabi@gmail.com

Abstract

Hapori MIPlan1 is a portfolio planner which participated in
the optimal, satisficing, and agile tracks of the International
Planning Competition (IPC) 2023. It uses the Mixed-Integer
Programming approach by (Núñez, Borrajo, and Linares
López 2015) to compute a sequential static portfolio that
achieves the best achievable performance with a linear com-
bination of planners.

Definitions
Before we describe the greedy portfolio computation algo-
rithm, we give some definitions concerning planning tasks,
sequential portfolios and quality metrics.

Informally speaking, a classical planning task consists of
an initial state, a goal description and a set of operators. In
the setting of satisficing planning, solving a planning task
entails finding any operator sequence that leads from the
initial state to a goal state, with a preference for cheap so-
lutions. On the other hand, in the setting of agile planning,
the task is to find solutions as fast as possible, regardless of
the solution cost. The third setting we consider in this plan-
ner abstract is bounded-cost planning, where plans must not
be more expensive than a given bound.

We define c(A, I, t) as the cost of the solution a planning
algorithm A finds for planning task I within time t, or as
∞ if it does not find a solution in that time. Furthermore,
we let c⋆(I) denote the minimum known solution cost for
task I (approximated by a set of Fast Downward configura-
tions). Following IPC evaluation criteria, we define the solu-
tion quality qsol(A, I, t) = c⋆(I)

c(A,I,t) as the minimum known
solution cost divided by the solution cost achieved by A in
time t.

A sequential planning portfolio P is a sequence of pairs
⟨A, t⟩ where A is a planning algorithm and t ∈ N>0 is the
time limit in seconds for A. We denote the portfolio resulting
from appending a component ⟨A, t⟩ to a portfolio P by P ⊕
⟨A, t⟩.

We now define two quality scores q(P, I) that evaluate the
performance of a portfolio P on task I . In the satisficing and

1Hapori is the Maori word for community.

bounded-cost settings we use the solution quality qsol(P, I).
It is the maximum solution quality any of the components in
P achieves for I , i.e.,

qsol(P, I) = max
⟨A,t⟩∈P

qsol(A, I, t).

Following IPC 2018 evaluation criteria, for the agile plan-
ning setting we define agile quality as

qagile(P, I) =


0 if t(P, I) > T

1 if t(P, I) ≤ 1

1− log10 t(P,I)
log10(T ) otherwise

,

where t(P, I) is the time that portfolio P needs to solve task
I and T is the total portfolio runtime.

A portfolio’s score on multiple tasks A is defined as the
sum of the individual scores, i.e., q(P, I) =

∑
I∈I q(P, I),

and the score of the empty portfolio is always 0.

Components and Training Data
Planners. As the pool of planners for our portfolios to
choose from, we used all planners from the IPC 2018. If an
IPC 2018 planner was already a portfolio, we used its com-
ponent planners instead. We only considered each planner
once (some portfolios included planners that were also sub-
mitted separately and several portfolios included the same
planners).

For the optimal track, we had to exclude maplan-1,
maplan-2, and MSP because they use CPLEX, and Com-
plementary1 because it generates suboptimal solutions. Fur-
thermore, the FDMS planners and Metis1 were covered by
Delfi already. This results in the following list of planners
(or their components):

• Complementary2 (Franco, Lelis, and Barley 2018)
• components of DecStar (Gnad, Shleyfman, and Hoff-

mann 2018)
• components of Delfi (Delfi1 and Delfi2 have the same

components; Katz et al., 2018b)
• Metis2 (Sievers and Katz 2018)



• Planning-PDBs (Moraru et al. 2018)
• Scorpion (Seipp 2018b)
• SymBA*1 (IPC 2014; Torralba et al., 2014)
• Symple-1 and Symple-2 (Speck, Geißer, and Mattmüller

2018)

All planners participating in the satisficing track also par-
ticipated in the agile track (except for Fast Downward Stone
Soup 2018), with an identical code base but possibly with
different configurations. We thus only have one set of plan-
ners but multiple configurations for these two tracks. We
had to exclude alien because we could not get it to run,
and freelunch-doubly-relaxed, fs-blind and fs-sim because
they have a large number of dependencies which results in
planner images too large to be included in our pool. Further-
more, IBaCoP-2018 and IBaCoP2-2018 use a large number
of planners or portfolios of which newer and stronger ver-
sions participated in IPC 2018 as standalone planners, or
which we failed to get to run, so we only cover the com-
ponent planners Jasper, Madagascar, Mercury, and Probe.
This results in the following list of planners (or their com-
ponents):

• Cerberus and Cerberus-gl (Katz 2018)
• components of DecStar (Gnad, Shleyfman, and Hoff-

mann 2018)
• components of Fast Downward Remix (Seipp 2018a)
• components of Fast Downward Stone Soup 2018 (Seipp

and Röger 2018)
• Jasper (IPC 2014; Xie, Müller, and Holte, 2014)
• LAPKT-DUAL-BFWS, LAPKT-POLYNOMIAL-

BFWS, LAPKT-DFS+, and LAPKT-BFWS-Preference
(Francès et al. 2018)

• Madagascar (IPC 2014; Rintanen, 2014)
• Mercury2014 (Katz and Hoffmann 2014)
• MERWIN (Katz et al. 2018a)
• OLCFF (Fickert and Hoffmann 2018)
• Probe (IPC 2014; Lipovetzky et al., 2014)
• Grey Planning configuration of Saarplan (Fickert et al.,

2018; rest covered by DecStar)
• Symple-1 and Symple-2 (Speck, Geißer, and Mattmüller

2018)

Benchmarks and Runtime. For training the portfolios,
we used all tasks and domains from previous IPCs, from
Delfi (Katz et al. 2018b), and from the 21.11 Autoscale col-
lection Torralba, Seipp, and Sievers (2021), leading to a set
of 92 domains with 7330 tasks. We used Downward Lab
(Seipp et al. 2017) to run all planners on all benchmarks on
AMD EPYC 7742 2.25GHz processors, imposing a mem-
ory limit of 8 GiB and a time limit of 30 minutes for optimal
planners and 5 minutes for satisficing and agile planners. For
each run, we stored its outcome (plan found, out of memory,
out of time, task not supported by planner, error), the exe-
cution time, the maximum resident memory, and if the run
found a plan, the plan length and plan cost. This data set is

online available.2 As training data for our optimal (respec-
tively satisficing/agile) portfolios, we selected from each do-
main the 30 tasks which are solved by the fewest optimal (or
satisficing/agile) planners, which results in 1926 (optimal)
and 2377 (satisficing/agile) remaining tasks.

MIPLAN
MIPLAN portfolios have been generated using Mixed-
Integer Programming (MIP), which computes the portfolio
with the best achievable performance with respect to a selec-
tion of training planning tasks (Núñez, Borrajo, and Linares
López 2015). The resulting portfolio is a linear combination
of candidate planners defined as a sorted set of pairs <plan-
ner, time>. Our MIP model considers an objective function
that maximizes a weighted sum of different parameters in-
cluding overall running time and quality.

Since we consider two different criteria (time and qual-
ity), it could be viewed and solved as a multi-objective max-
imization problem. Instead, we solve two MIP tasks in se-
quence while preserving the cost of the objective function
from the solution of the first MIP. Specifically, we first run
the MIP task to optimize only quality, i.e., qsol or qagile de-
pending on the track. If a solution exists, then a second ex-
ecution of the MIP model is performed to find the combi-
nation of candidate planners that achieves the same quality
(denoted as Q) while minimizing the overall running time.
To enforce a solution with the same quality an additional
constraint is added:

∑n
i=0 qualityi ≥ Q − ϵ, where ϵ is

just any small real value used to avoid floating-point errors.
Clearly, a solution is guaranteed to exist here, since a first so-
lution was already found in the previous step. Pseudocode 1
shows the steps followed to generate all the submitted port-
folios where quality was maximized first, and then running
time was minimized among the combinations that achieved
the optimal quality. In our experiments, ϵ = 0.001.

Algorithm 1 Build a portfolio optimizing quality and time
1: set weights to optimize only quality
2: portfolio1 := solve the MIP task
3: Q := the resulting value of the objective function
4: if a solution exists then
5: add constraint

∑n
i=0 qualityi ≥ Q− 0.001

6: set weights to optimize only overall running time
7: portfolio2 := solve the MIP task return portfolio2
8: else
9: exit with no solution

The MIP task used in this work does not result in any par-
ticular order to execute the planners. It only assigns an exe-
cution time to each planner, which is either zero or a positive
amount of time.

Executing Sequential Portfolios
In the previous sections, we assumed that a portfolio simply
assigns a runtime to each algorithm, leaving their sequen-
tial order unspecified. With the simplifying assumption that

2URL to be published



all planners use the full assigned time and do not communi-
cate with each other, the order is indeed irrelevant. In reality
the situation is more complex since we do not know upfront
how long a selected planner will really run. Therefore, we
treat per-algorithm time limits defined by the portfolio as
relative, rather than absolute values: whenever we start an
algorithm, we compute the total allotted time of this and all
following algorithms and scale it to the actually remaining
computation time. We then assign the respective scaled time
to the run. As a result, the last algorithm is allowed to use all
of the remaining time.

In the satisficing setting we would like to use the cost of
a plan found by one algorithm to prune the search of subse-
quent planner runs (in the agile setting we stop after finding
the first valid plan). However, since we use the planners as
black boxes, this is impossible in our setting.

We use the driver component of Fast Downward (Helmert
2006) which implements the above described mechanic for
running portfolios.

Resulting Portfolios
Optimal Track
We pass the quality score qsol and execution time obtained
by the optimal planners in the benchmarks described above
to Algorithm 1, together with a time limit of 1800 seconds.
The resulting portfolio for the optimal track consists of 8
component algorithms. The minimum and maximum time
limit are 14 and 861 seconds, allocated to a Delfi configu-
ration and Scorpion, respectively. As we mentioned before,
the MIP task does not specify the execution sequence of the
generated portfolios. However, we have sorted the execution
sequence of the portfolio in decreasing order of the allotted
time.

Satisficing Track
We pass the quality score qsol and execution time obtained
by the optimal and satisficing planners in the benchmarks
described above to Algorithm 1, together with a time limit
of 1800 seconds. The resulting portfolio for the satisficing
track consists of 82 component algorithms. The minimum
and maximum time limit are 1 and 261 seconds, allocated to
two different Fast Downward components. We have sorted
the execution sequence of the portfolio in decreasing order
of the allotted time.

Agile Track
In this case, we pass the agile score qagile and execution time
obtained by the satisficing planners in the benchmarks de-
scribed above to Algorithm 1, together with a time limit of
300 seconds. The resulting portfolio for the agile track con-
sists of 37 component algorithms. The minimum and max-
imum time limit are 1 and 41 seconds, allocated to a Fast
Downward Component and LAPKT-BFWS-Preference, re-
spectively. Unlike the other tracks, execution order plays a
role in the Agile track. We defined the execution sequence
by randomly ordering the planners with non-zero execution
time assigned.

Acknowledgments
The success of a portfolio planner must be primarily at-
tributed to the developers of the portfolio components.
Therefore, we would like to express our gratitude to the nu-
merous authors of the components on which our portfolios
are based.

References
Fickert, M.; Gnad, D.; Speicher, P.; and Hoffmann, J. 2018.
SaarPlan: Combining Saarland’s Greatest Planning Tech-
niques. In Ninth International Planning Competition (IPC-
9): Planner Abstracts, 11–16.
Fickert, M.; and Hoffmann, J. 2018. OLCFF: Online-
Learning hCFF. In Ninth International Planning Competition
(IPC-9): Planner Abstracts, 17–19.
Francès, G.; Geffner, H.; Lipovetzky, N.; and Ramiréz, M.
2018. Best-First Width Search in the IPC 2018: Complete,
Simulated, and Polynomial Variants. In Ninth International
Planning Competition (IPC-9): Planner Abstracts, 23–27.
Franco, S.; Lelis, L. H. S.; and Barley, M. 2018. The Com-
plementary2 Planner in the IPC 2018. In Ninth International
Planning Competition (IPC-9): Planner Abstracts, 32–36.
Gnad, D.; Shleyfman, A.; and Hoffmann, J. 2018. DecStar
– STAR-topology DECoupled Search at its best. In Ninth
International Planning Competition (IPC-9): Planner Ab-
stracts, 42–46.
Helmert, M. 2006. The Fast Downward Planning System.
26: 191–246.
Katz, M. 2018. Cerberus: Red-Black Heuristic for Planning
Tasks with Conditional Effects Meets Novelty Heuristic and
Enchanced Mutex Detection. In Ninth International Plan-
ning Competition (IPC-9): Planner Abstracts, 47–51.
Katz, M.; and Hoffmann, J. 2014. Mercury Planner: Push-
ing the Limits of Partial Delete Relaxation. In Eighth Inter-
national Planning Competition (IPC-8): Planner Abstracts,
43–47.
Katz, M.; Lipovetzky, N.; Moshkovich, D.; and Tuisov, A.
2018a. MERWIN Planner: Mercury Enchanced With Nov-
elty Heuristic. In Ninth International Planning Competition
(IPC-9): Planner Abstracts, 53–56.
Katz, M.; Sohrabi, S.; Samulowitz, H.; and Sievers, S.
2018b. Delfi: Online Planner Selection for Cost-Optimal
Planning. In Ninth International Planning Competition
(IPC-9): Planner Abstracts, 57–64.
Lipovetzky, N.; Ramirez, M.; Muise, C.; and Geffner, H.
2014. Width and Inference Based Planners: SIW, BFS(f),
and PROBE. In Eighth International Planning Competition
(IPC-8): Planner Abstracts, 6–7.
Moraru, I.; Edelkamp, S.; Martinez, M.; and Franco, S.
2018. Planning-PDBs Planner. In Ninth International Plan-
ning Competition (IPC-9): Planner Abstracts, 69–73.
Núñez, S.; Borrajo, D.; and Linares López, C. 2015. Auto-
matic construction of optimal static sequential portfolios for
AI planning and beyond. 226: 75–101.



Rintanen, J. 2014. Madagascar: Scalable Planning with
SAT. In Eighth International Planning Competition (IPC-
8): Planner Abstracts, 66–70.
Seipp, J. 2018a. Fast Downward Remix. In Ninth Inter-
national Planning Competition (IPC-9): Planner Abstracts,
74–76.
Seipp, J. 2018b. Fast Downward Scorpion. In Ninth Inter-
national Planning Competition (IPC-9): Planner Abstracts,
77–79.
Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M.
2017. Downward Lab. https://doi.org/10.5281/zenodo.
790461.
Seipp, J.; and Röger, G. 2018. Fast Downward Stone Soup
2018. In Ninth International Planning Competition (IPC-9):
Planner Abstracts, 80–82.
Sievers, S.; and Katz, M. 2018. Metis 2018. In Ninth Inter-
national Planning Competition (IPC-9): Planner Abstracts,
83–84.
Speck, D.; Geißer, F.; and Mattmüller, R. 2018. SYMPLE:
Symbolic Planning based on EVMDDs. In Ninth Inter-
national Planning Competition (IPC-9): Planner Abstracts,
91–94.
Torralba, Á.; Alcázar, V.; Borrajo, D.; Kissmann, P.; and
Edelkamp, S. 2014. SymBA*: A Symbolic Bidirectional
A* Planner. In Eighth International Planning Competition
(IPC-8): Planner Abstracts, 105–109.
Torralba, Á.; Seipp, J.; and Sievers, S. 2021. Automatic In-
stance Generation for Classical Planning. In Goldman, R. P.;
Biundo, S.; and Katz, M., eds., Proceedings of the Thirty-
First International Conference on Automated Planning and
Scheduling (ICAPS 2021), 376–384. AAAI Press.
Xie, F.; Müller, M.; and Holte, R. 2014. Jasper: the art of
exploration in Greedy Best First Search. In Eighth Inter-
national Planning Competition (IPC-8): Planner Abstracts,
39–42.


