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Alberto Pozanco, Horst Samulowitz2, Shirin Sohrabi2

1 University of Basel, Switzerland
2 IBM T.J. Watson Research Center, Yorktown Heights, USA
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Abstract
We describe Hapori-IBaCoP2, the instance-based config-
ured portfolio we submitted to the classical tracks of the
deterministic International Planning Competition held in
2023. The portfolio is the integration of IBaCoP2 (Cenamor,
De La Rosa, and Fernández 2016) into the Hapori family of
portfolios where the base planners and the training bench-
marks are shared by all variants.

Introduction
The configuration of a sequential planning portfolio consists
of a (time, algorithm) schedule empirically derived from the
performance of base planners on a set of benchmarks. Usu-
ally, these configurations remain fixed regardless of the plan-
ning task being evaluated. The key idea of IBaCop portfolios
is that we train a performance model that predicts the be-
haviour of planners when they solve a particular task, Thus,
for new problems, we compute the features that characterize
the task and query the model to select the subset of plan-
ners that are better candidates for finding a solution. IBa-
CoP2, the variant with the (solved, unsolved) classification
model, was declared the winner of the satisficing track of
the International Planning Competition (IPC) in 2014 (Val-
lati et al. 2015). The system and some further enhancements
are described in IBaCoP papers (Cenamor, De La Rosa,
and Fernández 2016; De la Rosa, Cenamor, and Fernández
2017).

Here, we focus on providing the general overview and the
remarkable details considered to prepare the submission to
IPC-2023 under the Hapori family of portfolios.

Feature Computation
To integrate IBaCoP2 into Hapori portfolios we have sepa-
rated the feature computation from the system. Given a plan-
ning task (domain and problem) in PDDL, this module com-
putes the following set of features:
• PDDL: Basic features extracted from the PDDL files, for

instance, the number of objects or actions
• Instantiation: Features resulting from the task ground-

ing into the finite domain representation, for instance the
number of instantiated actions or relevant facts

• SAS+: Statistics and ratios from the properties of the
causal graph and domain-transition graphs

• Fact Balance: Statistics over a set of propositions with
the intention of capturing the relaxed plan structure

• Initial state heuristics: Different alternatives to estimate
the hardness of the task through heuristic functions

• Landmarks: Statistics from the pre-computed landmarks
• Red-Black: Statistics and properties from the variables

used to compute the Red-Black heuristic

Each of this feature sub-set is computed independently in
separated programs. So, if one of them fails (e.g., running
out of memory) we assign missing values in this subset. This
allow us to use the output of the feature extraction even with
partial information.

Data and Model Training
As pool of planners for our portfolios to choose from, we
used all planners from IPC 2018. If a 2018 planner was al-
ready a portfolio, we used its component planners instead.
For the particular case of IBaCoP2-2018, it uses planners
and portfolios of which newer and stronger versions partici-
pated in IPC 2018 as standalone planners. Therefore, the ini-
tial pool consists of the newest individual components that
we manage to compile and run.

As benchmarks, we used all tasks and domains from pre-
vious IPCs, from Delfi (Katz et al. 2018), and from the 22.03
Autoscale collection (Torralba, Seipp, and Sievers 2021),
leading to a set of 92 domains with 7330 tasks. We used
Downward Lab (Seipp et al. 2017) to run all planners on all
benchmarks on AMD EPYC 7742 2.25GHz processors, im-
posing a memory limit of 8 GiB and a time limit of 30 min-
utes for optimal planners and 5 minutes for satisficing and
agile planners. For each run, we stored its outcome (plan
found, out of memory, out of time, task not supported by
planner, error), the execution time, the maximum resident
memory, and if the run found a plan, the plan length and plan
cost. This data set is online available1. As training data for
our optimal (respectively satisficing and agile) portfolios, we
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IPC Planner Configuration
ipc2014 Jasper
ipc2014 MPC
ipc2014 Probe
ipc2018 Madagascar
ipc2018 olcff
ipc2018 Saarplan
ipc2018 FD-2018 (config 43)
ipc2018 FD-2018 (config 55)
ipc2018 lapkt-bfws bfws-pref-agl, bfws-pref-sat
ipc2018 lapkt-bfws dual-bfws-agl, dual-bfws-sat
ipc2018 lapkt-bfws poly-bfws
ipc2018 lapkt-dfs-plus
ipc2018 symple1

Table 1: List of IBaCoP2 candidate planners for the satisfic-
ing track. Please refer to the source code to see configuration
parameters

IPC Planner Configuration
ipc2014 opt-symba1
ipc2018 decstar (config04)
ipc2018 decstar (config06)
ipc2018 complementary2
ipc2018 Delfi h2-simpless-dks-celmcut
ipc2018 Delfi simpless-dks-masb50kmiasmdfp
ipc2018 Delfi simpless-oss-masb50kmiasmdfp
ipc2018 metis metis2
ipc2018 planning-pdbs
ipc2018 Scorpion
ipc2018 symple1

Table 2: List of IBaCoP2 candidate planners for the optimal
track. Please refer to the source code to see configuration
parameters

selected from each domain the 30 tasks which are solved by
the fewest optimal (or satisficing or agile) planners, which
results in 2377 remaining tasks.

From the pool of planners we selected a subset of good
performing planners with the following procedure. From the
training data, and for each benchmark we selected the plan-
ner that solved most problems (i.e., ties broken in alphabet-
ical order). Then, from the list of 92 benchmarks we picked
the top 15 planners that appear most often as top performer.
The subset of selected planners for the satisficing and opti-
mal tracks are listed in Table 1 and Table 2.

Regarding the training step, we did not care about whether
the planners run out of time, out of memory or had an un-
specified error. Thus, we re-labelled the training data to mark
as ”unsolved” all tasks that did not get a solution for a
given planner. Then, we trained a Random Forest classifier
(Breiman 2001) using the scikit-learn python library. The
forest contains 120 trees with max-depth set to 17.

Portfolio Configurations
For a given task, we compute the task features and query the
model for each one of the candidate planners. The classifier
provides the probability of solving the task. Based on the
sorted list of probabilities, we select a subset of the best k

planners. We set k=5 in the satisficing track and k=3 in the
optimal track. The schedule for running the portfolio con-
sists of assigning equal time to the k selected planners. The
time for running the planners is the time limit minus the time
spent in computing the features.

IBaCoP2 was initially not designed to work with optimal
planners. However, now that we have modular components
and a set of optimal planners is available under the Hapori
pool, we were able to set a per-instance configuration with
optimal planners. The learning task is the same as in the sat-
isficing track, but the classifier is trained using data from op-
timal planners. Besides, for the optimal track it makes more
sense to run 3 planners rather than 5 because (1) there are
fewer candidate planners, and (2) in the particular case of
Scorpion, it needs 300 seconds to run its pre-computation
step.

Notes on Executing Sequential Portfolios
In the previous sections, we assumed that a portfolio simply
assigns a runtime to each algorithm, leaving their sequential
order unspecified. With the simplifying assumption that all
planner runs use the full assigned time and do not commu-
nicate information, the order is indeed irrelevant. In reality
the situation is more complex.

We do not know upfront how long a selected planner will
really run. Therefore, we treat per-algorithm time limits de-
fined by the portfolio as relative, rather than absolute values:
whenever we start an algorithm, we compute the total allot-
ted time of this and all following algorithms and scale it to
the actually remaining computation time. We then assign the
respective scaled time to the run. As a result, the last algo-
rithm is allowed to use all of the remaining time. We use the
driver component of Fast Downward (Helmert 2006) which
implements the above described mechanic for running port-
folios.
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