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Abstract

Hapori Linear Regression1 is a portfolio planner which par-
ticipated in the optimal, satisficing, and agile tracks of the
International Planning Competition (IPC) 2023. It uses lin-
ear regression to learn models that predict the best IPC 2018
planner for a given task based on simple planning task fea-
tures (Ferber and Seipp 2022).

Introduction
No planner excels at all tasks, but each has its individual
strength and weaknesses (Roberts and Howe 2009). Thus,
planner portfolios try to combine multiple planners to dip
into the strength of each one. Delfi (Katz et al. 2018b; Siev-
ers et al. 2019) is an example of an online portfolio. Given a
task, Delfi converts it to an image and then uses a convolu-
tional neural network (CNN) to predict the best planner for
the task. Delfi is highly successful and won the classical, op-
timal track of the International Planning Competition (IPC)
2018. Delfi is not only successful, but also unexplainable.
Experts understand neither which properties of a planning
tasks can be seen in the constructed images nor which rules
the CNN learned. The graph convolution based successor of
Delfi (Ma et al. 2020) improved upon the first issue, but the
second one remained. Ferber and Seipp (2022) successfully
train explainable portfolios with a similar performance to
Delfi. One of the portfolio selector methods by Ferber and
Seipp (2022) is based on linear regression, which receives
a set of numeric, explainable features as input and outputs
the name of the planner to execute. Here, we retrained this
portfolio selector using a larger set of benchmarks tasks and
the planners from the IPC 2018.

Method
Let O be the set of possible observations (in our case the
set of all possible PDDL tasks). Let F be a list of numeric
features such that each feature f ∈ F is a function f : O →
R. A feature vector x⃗ ∈ R|F | for an observation o holds the
evaluation of the features on the observation, i.e. x⃗i = Fi(o)
for 1 ≤ i ≤ |F |. A linear regression (Galton 1886) model

1Hapori is the Maori word for community.

m predicts a single continous value for a feature vector. It is
a function m : R|F | → R of the form m(x⃗) = x⃗ · w⃗ + b =
[x⃗ 1] · w⃗′, where w⃗ ∈ R|F | (w⃗′ ∈ R|F |+1) i.e. it produces
a linear combination of the feature values plus a bias term.
To train a linear regression model, we require training data,
a list of feature vector - outcome pairs [⟨x⃗i, yi⟩]i=1..N , and
a loss function l : R2 → R. Then, we try to find the weights
w⃗′ with the least loss, i.e.

argmin
w⃗′∈R|F |+1

=

N∑
i=1

l(m(x⃗i), yi). (1)

Like Ferber and Seipp (2022), we use the mean squared er-
ror as loss function. This allows us to compute an analytical
solution to the problem:

w⃗′ = (XTX)−1XT y⃗,with (2)

X = [x⃗T
1 . . . x⃗T

N ]T (3)

y⃗ = [y1 . . . yN ]T (4)

Let T be a list of N tasks and P be a set of planners. For
every task t = Ti, we compute the feature vector x⃗i. For
every tasks t = Ti and every planner p ∈ P , we set yi,p to
1, if the planner p solves the task t within the resource limits
and to 0 otherwise. Now we train for every planner a model
mp which estimates the likelyhood that the planner p solves
a task. We use the matrix X as defined in Equation 3 and
y⃗p = [yi,p]i=1..N .

Given a new task t′, our portfolio executes the planner p
with the highest estimated likelyhood of solving the task t,
i.e.

argmax
p∈P

mp(x⃗t′). (5)

Components and Training Data
Planners. As the pool of planners for our portfolios to
choose from, we used all planners from the IPC 2018. If an
IPC 2018 planner was already a portfolio, we used its com-
ponent planners instead. We only considered each planner
once (some portfolios included planners that were also sub-
mitted separately and several portfolios included the same
planners).



For the optimal track, we had to exclude maplan-1,
maplan-2, and MSP because they use CPLEX, and Com-
plementary1 because it generates suboptimal solutions. Fur-
thermore, the FDMS planners and Metis1 were covered by
Delfi already. This results in the following list of planners
(or their components):

• Complementary2 (Franco, Lelis, and Barley 2018)
• components of DecStar (Gnad, Shleyfman, and Hoff-

mann 2018)
• components of Delfi (Delfi1 and Delfi2 have the same

components; Katz et al., 2018b)
• Metis2 (Sievers and Katz 2018)
• Planning-PDBs (Moraru et al. 2018)
• Scorpion (Seipp 2018b)
• SymBA*1 (IPC 2014; Torralba et al., 2014)
• Symple-1 and Symple-2 (Speck, Geißer, and Mattmüller

2018)

All planners participating in the satisficing track also par-
ticipated in the agile track (except for Fast Downward Stone
Soup 2018), with an identical code base but possibly with
different configurations. We thus only have one set of plan-
ners but multiple configurations for these two tracks. We
had to exclude alien because we could not get it to run,
and freelunch-doubly-relaxed, fs-blind and fs-sim because
they have a large number of dependencies which results in
planner images too large to be included in our pool. Further-
more, IBaCoP-2018 and IBaCoP2-2018 use a large number
of planners or portfolios of which newer and stronger ver-
sions participated in IPC 2018 as standalone planners, or
which we failed to get to run, so we only cover the com-
ponent planners Jasper, Madagascar, Mercury, and Probe.
This results in the following list of planners (or their com-
ponents):

• Cerberus and Cerberus-gl (Katz 2018)
• components of DecStar (Gnad, Shleyfman, and Hoff-

mann 2018)
• components of Fast Downward Remix (Seipp 2018a)
• components of Fast Downward Stone Soup 2018 (Seipp

and Röger 2018)
• Jasper (IPC 2014; Xie, Müller, and Holte, 2014)
• LAPKT-DUAL-BFWS, LAPKT-POLYNOMIAL-

BFWS, LAPKT-DFS+, and LAPKT-BFWS-Preference
(Francès et al. 2018)

• Madagascar (IPC 2014; Rintanen, 2014)
• Mercury2014 (Katz and Hoffmann 2014)
• MERWIN (Katz et al. 2018a)
• OLCFF (Fickert and Hoffmann 2018)
• Probe (IPC 2014; Lipovetzky et al., 2014)
• Grey Planning configuration of Saarplan (Fickert et al.,

2018; rest covered by DecStar)
• Symple-1 and Symple-2 (Speck, Geißer, and Mattmüller

2018)

Benchmarks and Runtime. For training the portfolios,
we used all tasks and domains from previous IPCs, from
Delfi (Katz et al. 2018b), and from the 21.11 Autoscale col-
lection Torralba, Seipp, and Sievers (2021), leading to a set
of 92 domains with 7330 tasks. We used Downward Lab
(Seipp et al. 2017) to run all planners on all benchmarks on
AMD EPYC 7742 2.25GHz processors, imposing a mem-
ory limit of 8 GiB and a time limit of 30 minutes for optimal
planners and 5 minutes for satisficing and agile planners. For
each run, we stored its outcome (plan found, out of memory,
out of time, task not supported by planner, error), the exe-
cution time, the maximum resident memory, and if the run
found a plan, the plan length and plan cost. This data set is
online available.2 As training data for our optimal (respec-
tively satisficing/agile) portfolios, we selected from each do-
main the 30 tasks which are solved by the fewest optimal (or
satisficing/agile) planners, which results in 1926 (optimal)
and 2377 (satisficing/agile) remaining tasks.

Features. Ferber and Seipp (2022) showed that their mod-
els performed best when trained on the 49 PDDL features
of Fawcett et al. (2014). Thus, we also train our models on
those features. Among others, those include the number of
objects, the number of actions, and the mean number of pa-
rameters per predicate. For each task in our benchmark col-
lection, the PDDL features are also available online.

Executing Predictive Portfolios
Given a task, the portfolio selector computes the values of
its input features. Then, it evaluates the output of the trained
model with respect to the values of the features. Next, it in-
terprets the model output, e.g., if the model directly predicts
a planner, then this planner is selected; if it predicts for each
planner the probability that it solves the given task, then the
planner with highest probability is selected. Finally, it exe-
cutes the the selected planner for the whole time limit.
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