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Abstract

The cost-optimal planner Delfi has successfully participated
in the International Planning Competition (IPC) 2018. Its suc-
cess can be attributed to two main factors: the use of state-of-
the-art cost-optimal planners in its portfolio and the ability to
predict which of these planners is a good fit for a given plan-
ning task. Following that prior success, here we extend the
set of planners in the portfolio. The learning methodology is
adapted according to the prior work, applied now not only to
cost-optimal, but also to agile and satisficing planning.

Introduction
The cost-optimal planner Delfi (Katz et al. 2018b) was rated
first in the cost-optimal track of the International Planning
Competition (IPC) 2018. It uses a so-called online portfo-
lio approach (Cenamor, de la Rosa, and Fernández 2016;
Sievers et al. 2019a) to overcome the limitations of any in-
dividual planner, predicting which out of the collection of
planners will work well on the planning task at hand. That
collection included 17 planners of mostly similar configu-
rations, varying mostly in the heuristic used. The predic-
tion was done with the help of a deep learning tool, specifi-
cally convolutional neural network (CNN) (LeCun, Bengio,
and Hinton 2015), predicting whether a planner will solve
a planning task, represented by an image, within the prede-
fined time limit of 30 minutes. The image representation was
obtained based on a structural representation of a planning
task called abstract structure graph (ASG) (Sievers et al.
2019b), casting the graph as an adjacency matrix, condens-
ing and turning into a grayscale image.

In this work, we construct a new, community based ver-
sion of Delfi, which we now call Hapori Delfi 1. We extend
the collection of planners in the portfolio and adopt the best
performing learning methodology and architecture accord-
ing to the post-IPC 2018 investigation (Sievers et al. 2019a).
Specifically, we discretize the time interval into three equal
size intervals and predict whether the planner will solve the
task within that time interval. We use the same image-based
planning task representation as in the original Delfi and re-

1Hapori is the Maori word for community.

train the CNN for the new collection of planners. Addition-
ally, we go beyond just cost-optimal planning, preparing ver-
sions of Hapori Delfi also for the agile and satisficing tracks.
In the rest of the paper we describe the differences from the
original Delfi for each of the tracks we participate in, specif-
ically in the components used and the training data.

Components and Training Data
Planners. As the pool of planners for our portfolios to
choose from, we used all planners from the IPC 2018. If an
IPC 2018 planner was already a portfolio, we used its com-
ponent planners instead. We only considered each planner
once (some portfolios included planners that were also sub-
mitted separately and several portfolios included the same
planners).

For the optimal track, we had to exclude maplan-1,
maplan-2, and MSP because they use CPLEX, and Com-
plementary1 because it generates suboptimal solutions. Fur-
thermore, the FDMS planners and Metis1 were covered by
Delfi already. This results in the following list of planners
(or their components):

• Complementary2 (Franco, Lelis, and Barley 2018)
• components of DecStar (Gnad, Shleyfman, and Hoff-

mann 2018)
• components of Delfi (Delfi1 and Delfi2 have the same

components; Katz et al., 2018b)
• Metis2 (Sievers and Katz 2018)
• Planning-PDBs (Moraru et al. 2018)
• Scorpion (Seipp 2018b)
• SymBA*1 (IPC 2014; Torralba et al., 2014)
• Symple-1 and Symple-2 (Speck, Geißer, and Mattmüller

2018)

All planners participating in the satisficing track also par-
ticipated in the agile track (except for Fast Downward Stone
Soup 2018), with an identical code base but possibly with
different configurations. We thus only have one set of plan-
ners but multiple configurations for these two tracks. We
had to exclude alien because we could not get it to run,
and freelunch-doubly-relaxed, fs-blind and fs-sim because



they have a large number of dependencies which results in
planner images too large to be included in our pool. Further-
more, IBaCoP-2018 and IBaCoP2-2018 use a large number
of planners or portfolios of which newer and stronger ver-
sions participated in IPC 2018 as standalone planners, or
which we failed to get to run, so we only cover the com-
ponent planners Jasper, Madagascar, Mercury, and Probe.
This results in the following list of planners (or their com-
ponents):

• Cerberus and Cerberus-gl (Katz 2018)
• components of DecStar (Gnad, Shleyfman, and Hoff-

mann 2018)
• components of Fast Downward Remix (Seipp 2018a)
• components of Fast Downward Stone Soup 2018 (Seipp

and Röger 2018)
• Jasper (IPC 2014; Xie, Müller, and Holte, 2014)
• LAPKT-DUAL-BFWS, LAPKT-POLYNOMIAL-

BFWS, LAPKT-DFS+, and LAPKT-BFWS-Preference
(Francès et al. 2018)

• Madagascar (IPC 2014; Rintanen, 2014)
• Mercury2014 (Katz and Hoffmann 2014)
• MERWIN (Katz et al. 2018a)
• OLCFF (Fickert and Hoffmann 2018)
• Probe (IPC 2014; Lipovetzky et al., 2014)
• Grey Planning configuration of Saarplan (Fickert et al.,

2018; rest covered by DecStar)
• Symple-1 and Symple-2 (Speck, Geißer, and Mattmüller

2018)

Benchmarks and Runtime. For training the portfolios,
we used all tasks and domains from previous IPCs, from
Delfi (Katz et al. 2018b), and from the 21.11 Autoscale col-
lection Torralba, Seipp, and Sievers (2021), leading to a set
of 92 domains with 7330 tasks. We used Downward Lab
(Seipp et al. 2017) to run all planners on all benchmarks on
AMD EPYC 7742 2.25GHz processors, imposing a mem-
ory limit of 8 GiB and a time limit of 30 minutes for optimal
planners and 5 minutes for satisficing and agile planners. For
each run, we stored its outcome (plan found, out of memory,
out of time, task not supported by planner, error), the exe-
cution time, the maximum resident memory, and if the run
found a plan, the plan length and plan cost. This data set is
online available.2 As training data for our optimal (respec-
tively satisficing/agile) portfolios, we selected from each do-
main the 30 tasks which are solved by the fewest optimal (or
satisficing/agile) planners, which results in 1926 (optimal)
and 2377 (satisficing/agile) remaining tasks.
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Seipp, J.; and Röger, G. 2018. Fast Downward Stone Soup
2018. In Ninth International Planning Competition (IPC-9):
Planner Abstracts, 80–82.
Sievers, S.; and Katz, M. 2018. Metis 2018. In Ninth Inter-
national Planning Competition (IPC-9): Planner Abstracts,
83–84.
Sievers, S.; Katz, M.; Sohrabi, S.; Samulowitz, H.; and
Ferber, P. 2019a. Deep Learning for Cost-Optimal Plan-
ning: Task-Dependent Planner Selection. In Proceedings of
the Thirty-Third AAAI Conference on Artificial Intelligence
(AAAI 2019), 7715–7723. AAAI Press.
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