
Ragnarok

Dominik Drexler, Daniel Gnad, Paul Höft, Jendrik Seipp, David Speck, Simon Ståhlberg
Linköping University, Linköping, Sweden

⟨dominik.drexler, daniel.gnad, paul.hoft, jendrik.seipp, david.speck, simon.stahlberg⟩@liu.se

Abstract

Ragnarok is a sequential portfolio planner that uses several
classical planners developed by the Representation, Learn-
ing and Planning Lab members of the Linköping Univer-
sity in Sweden. Much like the Norse saga Ragnarök, from
whom our planner takes its name, our planners battled each
other in a training phase, from which we obtained the time
slices for each planner to create a planner that incorporates
the strengths of each individual planner.

Introduction
Ragnarök is a Norse saga about the battle between gods and
giants, which results in the destruction of the entire world.
Later, however, a balance is struck that allows the reborn
All-Father Fimbultyr (Odin) to create a new world in which
all evil is ameliorated. Similar to the Norse saga, our plan-
ner was born out of a battle, but not of gods or giants, but
of planners developed by the Representation, Learning and
Planning Lab members of the Linköping University in Swe-
den. In the past, our planners fought against each other to
solve as many tasks as possible in as little time as possi-
ble. However, by computing a schedule that assigns fair time
slices to all planners, a new planner, which we call Rag-
narok, was created that balances the strengths of all these
planners and achieves a higher performance than any of the
planners alone.

Ragnarok is a sequential portfolio planner that uses sev-
eral optimal classical planners developed by the authors and
was submitted to the optimal track of the 2023 International
Planning Competition (IPC). In the following, we describe
the individual planners and the configuration used within the
portfolio of Ragnarok. Then, we describe the approach to
building the portfolio, i.e., assigning the time slices to the
planners. Finally, we show the detailed composition of the
Ragnarok planner portfolio which differs with respect to dif-
ferent PDDL language features.

Planners
Since Ragnarok is a sequential portfolio of planners and
configurations, it consists of different planners running se-
quentially for a fixed precomputed period of time. In total,
we considered six different classical planners with different
underlying search approaches. Two of the six planners, the

Sc
or

pi
on

DecStar

Sym
K

Dofri

Odin

LiftedBFS

Figure 1: Illustration of the creation of the Ragnarok planner.
The image was created with the assistance of DALL·E 2.

Odin planner, which performs A∗ with a subset-saturated
transition cost partitioning heuristic (Drexler, Seipp, and
Speck 2021), and the Dofri planner, which is based on the
saturated post-hoc optimization heuristic (Seipp, Keller, and
Helmert 2021), were not selected by our automated portfo-
lio generation procedure, i.e., were assigned zero time. Since
both planners participate in 2023 IPC individually, we refer
the reader to the planner abstracts of these two planners for
more details. A more detailed explanation of the other four
planners follows.

Scorpion

Scorpion is implemented within the Scorpion planning sys-
tem (Seipp, Keller, and Helmert 2020), which is an exten-
sion of Fast Downward (Helmert 2006). Like the original
Scorpion configuration, which participated in IPC 2018, the
Scorpion configurations we use for Ragnarok use A∗ (Hart,
Nilsson, and Raphael 1968) with an admissible heuristic
(Pearl 1984) to find optimal plans. The overall heuristic is
based on component abstraction heuristics that are combined
by saturated cost partitioning (Seipp, Keller, and Helmert
2020).



DecStar
DecStar is a planner based on decoupled state-space search,
or decoupled search for short. Decoupled search reduces
the representation size of search spaces by exploiting the
structure of the problem within the search (Gnad and Hoff-
mann 2015; Gnad, Hoffmann, and Domshlak 2015; Gnad
and Hoffmann 2018). The size of the decoupled state space
can be exponentially smaller than that of the explicit state
space, which decoupled search achieves by partitioning the
task into several components, called factors. In particular,
it tries to identify a star topology, with a single center fac-
tor that interacts with multiple leaf factors. The search then
only branches over actions affecting the center factor, enu-
merating reachable leaf-component states separately. Search
nodes, i.e. decoupled states, then represent sets of states.
This makes exact duplicate checking often very ineffective
because it is less likely to visit two exactly identical decou-
pled states. This issue is solved by using dominance pruning,
which identifies states that can be safely discarded, without
affecting completeness and optimality. We employ the dom-
inance pruning techniques introduced in Gnad (2021).

Decoupled search is implemented as an extension of the
Fast Downward (FD) planning system (Helmert 2006). By
changing the low-level state representation, many of FD’s
built-in algorithms and functionality can be used with only
minor adaptations. We perform decoupled search as intro-
duced by Gnad and Hoffmann (2018), using the partition-
ing method called bM80s from Gnad, Torralba, and Fišer
(2022). This process is given a time limit of 30 seconds.

Decoupled search is orthogonal to other known state-
space reduction methods, such as partial-order reduction
(POR) and symmetry breaking. Given this orthogonality, de-
coupled search can and has been combined with these tech-
niques, namely with strong stubborn sets pruning (Gnad,
Wehrle, and Hoffmann 2016; Gnad, Hoffmann, and Wehrle
2019) and symmetry breaking (Gnad et al. 2017). POR via
strong stubborn sets is a technique that is well-known in
explicit-state search and originates from the model checking
community (Valmari 1989; Alkhazraji et al. 2012; Wehrle
and Helmert 2012, 2014). Symmetry breaking is a widely
known approach across many areas of computer science
(e.g., Starke 1991; Emerson and Sistla 1996; Fox and Long
1999; Rintanen 2003; Pochter, Zohar, and Rosenschein
2011; Domshlak, Katz, and Shleyfman 2012).

DecStar can run with decoupled search, but can also fall
back to explicit-state search, for example if no good problem
decomposition could be detected. In Ragnarok, we use two
configurations of DecStar: DecStar-1 uses decoupled search,
DecStar-2 uses explicit-state search. Both variants employ
pruning using strong stubborn sets and symmetry breaking,
and use the LM-cut heuristic (Helmert and Domshlak 2009).
We disable the stubborn-sets pruning if less than 25% of the
actions have been pruned after 1000 state expansions.

SymK
SymK is based on Fast Downward 22.06 (Helmert 2006)
and SymBA∗ (Torralba et al. 2014). It is a symbolic search
planner capable of finding a single optimal solution for clas-
sical planning tasks or subsequently generating all solutions

ordered by quality (Speck, Mattmüller, and Nebel 2020; von
Tschammer, Mattmüller, and Speck 2022). It also natively
supports several expressive extensions to the basic classical
planning formalism, STRIPS, such as conditional effects or
derived predicates with axioms (Speck 2022). Conditional
effects are supported by encoding them directly in the tran-
sition relation, as described in Kissmann, Edelkamp, and
Hoffmann (2014). Derived predicates and axioms are sup-
ported by SymK using the symbolic translation approach of
Speck et al. (2019), where all occurrences of derived predi-
cates in the planning task are replaced by their correspond-
ing primary representations using symbolic data structures.
As the underlying symbolic data structure for representing
sets of states and transition relations, we use binary deci-
sion diagrams (Bryant 1986) of the CUDD library (Somenzi
2015). For the competition, we chose to perform bidirec-
tional symbolic blind search, i.e., without any heuristic es-
timation, which is known to be one of the strongest search
strategies for symbolic search (Torralba et al. 2017; Speck,
Mattmüller, and Nebel 2020). For more information, see the
planner abstract for SymK, which will also participate as a
stand-alone planner at the IPC 2023.

Lifted Planner
The first step for a planner using a grounded representa-
tion of a problem instance involves identifying all possible
grounded actions in states that can be reached from the ini-
tial state. This set of grounded actions is often approximated
by exploiting an abstract version of the original instance. As
shown in Figure 2, this step is allocated 15 minutes to com-
pute the set of grounded actions. If this time constraint is not
met, the instance is handed over to a lifted planner that uses
the lifted representation of the instance.

A lifted planner avoids the preprocessing step by deter-
mining the set of applicable actions for a given state as
needed. Specifically, let A represent an action schema and
S a state; then the function A(A,S) identifies the set of
groundings of A such that the precondition of A holds in S.
Function A is invoked once for every expanded state S. To
understand the benefit of this approach, consider an instance
where the set of grounded actions applicable in reachable
states is vast, but only a small fraction is needed to devise a
plan leading to a goal state. In this case, if the goal state is
close enough to the initial state, it may be more efficient to
call A a few times rather than grounding the entire instance.
It is important to note that the state S helps limit potential
groundings.

Lifted Successor Generator. We provide a brief overview
of our lifted successor generator. In general terms, our lifted
successor generator over-approximates the set of applicable
actions by enumerating all maximum cliques of a graph rep-
resenting the state and the action schema’s precondition. The
algorithm is exact (does not over-approximate) if the precon-
dition of the given action only has binary atoms.

The first step in the algorithm is to create a substitution
consistency graph, based on the action schema’s parame-
ters and precondition, the problem’s objects, and the spe-
cific state. More specifically, the graph’s vertices represent a



single substitution, i.e., replacing a free variable with an ob-
ject, while edges indicate the consistency between two sub-
stitutions. In short, two substitutions are consistent if they
replace different variables, and if the atoms in the precondi-
tion’s partial grounding match the state’s atoms (with respect
to the literal’s polarity).

The second step involves enumerating all maximum
cliques in this graph. A clique is a subset of vertices where
each vertex is connected to every other vertex in the subset,
and a maximal clique is a clique that cannot be extended by
including an adjacent vertex. A clique is considered maxi-
mum if no other clique with strictly more vertices exists. As
a result, maximum cliques represent complete groundings of
the action schema and yield ground actions. However, due to
the notion of consistency being limited to two substitutions,
the algorithm is only exact when the precondition’s atoms
are binary at most. When this is not the case, we might over-
approximate the set of applicable actions, necessitating ver-
ification of each resulting ground action’s actual applicabil-
ity. In practice, over-approximation is not an issue, and the
effort spent double-checking applicability is negligible.

The graph is structured so that each maximum clique rep-
resents a (potentially) applicable ground action in a particu-
lar state. In difficult-to-ground instances, the second step is
the primary bottleneck, and we use two different algorithms
for enumerating all maximum cliques:

• Bron-Kerbosch: This recursive backtracking algorithm
is used for enumerating all maximal cliques in an
undirected graph (Bron and Kerbosch 1973). We have
adapted this algorithm to only enumerate maximum
cliques, backtracking early if only maximal cliques re-
main.

• k-Partite, k-Clique: Our graph is k-partite, with k repre-
senting the number of free variables, as there are no edges
connecting vertices that assign the same variable to dif-
ferent objects. We utilize a k-partite k-clique algorithm
that takes advantage of this graph structure (Mirghorbani
and Krokhmal 2013).

We discovered that the performance characteristics of the
clique algorithms can vary greatly, making both of them
valuable. To capitalize on this, we apply both algorithms to
100 states to determine the best fit for the given instance.
Subsequently, we commit to the algorithm with the lowest
total wall time.

Implementation and Configuration. Our lifted succes-
sor generator was implemented in PowerLifted (Corrêa et al.
2020). We configured the planner using breadth-first search
and a sparse state representation. In other words, we did
not use any informative search algorithm. Additionally, our
lifted successor generator is restricted to STRIPS with typ-
ing and negative preconditions.

Execution Strategy
As Ragnarok combines planners with very different
strengths and weaknesses we were challenged with build-
ing an execution flow that was capable of utilizing this di-
versity. While the portfolio learning algorithm was taking

PDDL
Input Grounding Success? Lifted

Planner

h2 Preprocessor
Axioms? Axiom

Portfolio

Conditional
Effects?

C. Effects
Portfolio

STRIPS
Portfolio

15min No

Yes

3min
Yes

No

Yes

No

Figure 2: Overview of the Ragnarok planner workflow,
which uses different portfolios and planners depending on
the PDDL language features present and whether the prob-
lem is hard to ground.

care of the optimization for a specific suite of configurations
we devised the control flow shown in Figure 2 to divide the
planning tasks into 4 categories: Hard to ground, Axioms,
Conditional Effects but no Axioms, and STRIPS. Each of
these categories could then be individually optimized with
the portfolio learning algorithm. As we only had one lifted
planner there was no need to learn a portfolio for this cate-
gory.

Configuration
STRIPS Portfolio
1. DecStar-1 for 79 seconds
2. Scorpion-1 for 898 seconds
3. SymK for 716 seconds
4. DecStar-2 for 15 seconds

Conditional Effects Portfolio
1. Scorpion-2 for 547 seconds
2. SymK for 1000 seconds

Axioms Portfolio
1. SymK for 1513 seconds
2. Scorpion-blind for 1 second

References
Alkhazraji, Y.; Wehrle, M.; Mattmüller, R.; and Helmert, M.
2012. A Stubborn Set Algorithm for Optimal Planning. In
Proc. ECAI 2012, 891–892.
Bron, C.; and Kerbosch, J. 1973. Finding All Cliques of an
Undirected Graph (Algorithm 457). Communications of the
ACM, 16(9): 575–576.
Bryant, R. E. 1986. Graph-Based Algorithms for Boolean
Function Manipulation. IEEE Transactions on Computers,
35(8): 677–691.



Corrêa, A. B.; Pommerening, F.; Helmert, M.; and Francès,
G. 2020. Lifted Successor Generation using Query Opti-
mization Techniques. In Proc. ICAPS 2020, 80–89.
Domshlak, C.; Katz, M.; and Shleyfman, A. 2012. Enhanced
Symmetry Breaking in Cost-Optimal Planning as Forward
Search. In Proc. ICAPS 2012, 343–347.
Drexler, D.; Seipp, J.; and Speck, D. 2021. Subset-Saturated
Transition Cost Partitioning. In Proc. ICAPS 2021, 131–
139.
Emerson, E. A.; and Sistla, A. P. 1996. Symmetry and Model
Checking. Formal Methods in System Design, 9(1–2): 105–
131.
Fox, M.; and Long, D. 1999. The Detection and Exploitation
of Symmetry in Planning Problems. In Proc. IJCAI 1999,
956–961.
Gnad, D. 2021. Revisiting Dominance Pruning in Decou-
pled Search. In Proc. AAAI 2021, 11809–11817.
Gnad, D.; and Hoffmann, J. 2015. Beating LM-Cut with
hmax (Sometimes): Fork-Decoupled State Space Search. In
Proc. ICAPS 2015, 88–96.
Gnad, D.; and Hoffmann, J. 2018. Star-Topology Decoupled
State Space Search. AIJ, 257: 24–60.
Gnad, D.; Hoffmann, J.; and Domshlak, C. 2015. From Fork
Decoupling to Star-Topology Decoupling. In Proc. SoCS
2015, 53–61.
Gnad, D.; Hoffmann, J.; and Wehrle, M. 2019. Strong Stub-
born Set Pruning for Star-Topology Decoupled State Space
Search. JAIR, 65: 343–392.
Gnad, D.; Torralba, Á.; and Fišer, D. 2022. Beyond Stars
- Generalized Topologies for Decoupled Search. In Proc.
ICAPS 2022, 110–118.
Gnad, D.; Torralba, Á.; Shleyfman, A.; and Hoffmann, J.
2017. Symmetry Breaking in Star-Topology Decoupled
Search. In Proc. ICAPS 2017, 125–134.
Gnad, D.; Wehrle, M.; and Hoffmann, J. 2016. Decoupled
Strong Stubborn Sets. In Proc. IJCAI 2016, 3110–3116.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics, 4(2): 100–107.
Helmert, M. 2006. The Fast Downward Planning System.
JAIR, 26: 191–246.
Helmert, M.; and Domshlak, C. 2009. Landmarks, Critical
Paths and Abstractions: What’s the Difference Anyway? In
Proc. ICAPS 2009, 162–169.
Kissmann, P.; Edelkamp, S.; and Hoffmann, J. 2014. Gamer
and Dynamic-Gamer – Symbolic Search at IPC 2014. In
IPC-8 Planner Abstracts, 77–84.
Mirghorbani, M.; and Krokhmal, P. A. 2013. On finding
k-cliques in k-partite graphs. Optimization Letters, 7: 1155–
1165.
Pearl, J. 1984. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley.
Pochter, N.; Zohar, A.; and Rosenschein, J. S. 2011. Exploit-
ing Problem Symmetries in State-Based Planners. In Proc.
AAAI 2011, 1004–1009.

Rintanen, J. 2003. Symmetry Reduction for SAT Represen-
tations of Transition Systems. In Proc. ICAPS 2003, 32–40.
Seipp, J.; Keller, T.; and Helmert, M. 2020. Saturated Cost
Partitioning for Optimal Classical Planning. JAIR, 67: 129–
167.
Seipp, J.; Keller, T.; and Helmert, M. 2021. Saturated Post-
hoc Optimization for Classical Planning. In Proc. AAAI
2021, 11947–11953.
Somenzi, F. 2015. CUDD: CU Decision Diagram Package
– Release 3.0.0. https://github.com/ivmai/cudd. Accessed:
2023-02-20.
Speck, D. 2022. Symbolic Search for Optimal Planning with
Expressive Extensions. Ph.D. thesis, University of Freiburg.
Speck, D.; Geißer, F.; Mattmüller, R.; and Torralba, Á. 2019.
Symbolic Planning with Axioms. In Proc. ICAPS 2019,
464–472.
Speck, D.; Mattmüller, R.; and Nebel, B. 2020. Symbolic
Top-k Planning. In Proc. AAAI 2020, 9967–9974.
Starke, P. H. 1991. Reachability Analysis of Petri Nets Us-
ing Symmetries. Systems Analysis Modelling Simulation,
8(4–5): 293–303.
Torralba, Á.; Alcázar, V.; Borrajo, D.; Kissmann, P.; and
Edelkamp, S. 2014. SymBA*: A Symbolic Bidirectional A*
Planner. In IPC-8 Planner Abstracts, 105–109.
Torralba, Á.; Alcázar, V.; Kissmann, P.; and Edelkamp, S.
2017. Efficient Symbolic Search for Cost-optimal Planning.
AIJ, 242: 52–79.
Valmari, A. 1989. Stubborn sets for reduced state space gen-
eration. In Proc. APN 1989, 491–515.
von Tschammer, J.; Mattmüller, R.; and Speck, D. 2022.
Loopless Top-K Planning. In Proc. ICAPS 2022, 380–384.
Wehrle, M.; and Helmert, M. 2012. About Partial Order
Reduction in Planning and Computer Aided Verification. In
Proc. ICAPS 2012, 297–305.
Wehrle, M.; and Helmert, M. 2014. Efficient Stubborn Sets:
Generalized Algorithms and Selection Strategies. In Proc.
ICAPS 2014, 323–331.


