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Abstract

DiSCO combines two main components in a portfolio ap-
proach: Decoupled state-space Search and COnjunctions
heuristics. Decoupled search exploits the structure of the
problem to decompose planning tasks. This allows a com-
pact state-space representation that makes the search more ef-
ficient. Conjunctions heuristics are a generalization of delete
relaxation, that “unrelax” sets of fact conjunctions that can
be refined during search. Both techniques individually have
shown to yield state-of-the-art performance in classical plan-
ning. In DiSCO, we combine them in a sequential portfolio
to inherit their respective strengths.

Introduction
With decoupled search and conjunctions heuristics, DiSCO
combines two state-of-the-art techniques into a portfolio
planner that participates in the satisficing and agile tracks
of the competition.

Decoupled search tries to decompose a given planning
task, if possible. In case a good problem decomposition
was detected, decoupled search typically performs very
well. Finding a decomposition is fast, it succeeds (or fails)
quickly, so not much time is lost in the latter case.

In addition to decoupled search, DiSCO uses online-
refinement search algorithms that improve the semi-delete
relaxation heuristic hCFF during search. It uses search algo-
rithms based on enforced hill-climbing (EHC) and greedy
best-first search (GBFS) with novelty pruning and relaxed
subgoal counting. A LAMA-like anytime search, replacing
the fully delete-relaxed hFF heuristic with hCFF, completes
DiSCO on the satisficing track.

Finally, on tasks with ADL features such as conditional
effects or axioms, DiSCO runs a portfolio of alternative con-
figurations that drop advanced techniques in favor of simpler
but feature-complete search algorithms and heuristics.

Decoupled Search
We perform decoupled search as introduced by Gnad and
Hoffmann (2018), in its integration in the Fast Downward
planning system (Helmert 2006). We use the improved fork
and inverted-fork factorings from Gnad, Poser, and Hoff-
mann (2017), as well as the linear-programming (LP) based
bM80s factoring method from Gnad, Torralba, and Fišer

(2022). The outcome of the factoring process is a partition-
ing F = ⟨C,L⟩ of the variables of the planning task Π,
where C is the (possibly empty) center factor of F and L is
its set of non-empty leaf factors, such that C∪

⋃
L∈L L = V .

A factoring F induces a partitioning of the actions into
global actions AG and leaf actions AL. For every L ∈ L,
the leaf actions AL of L are those actions that have effects
only on L and are preconditioned by variables in C ∪L. We
define the set of leaf actions as AL :=

⋃
L∈L AL and the

global actions as AG := A \ AL.
Given a factoring F , decoupled search is performed as

follows: The search will only branch over global actions.
Along such a path of global actions πG, for each leaf factor
L, the search maintains a set of leaf paths, i. e., actions only
affecting variables of L, that comply with πG. Intuitively,
for a leaf path πL to comply with a global path πG, it must
be possible to embed πL into πG into an overall action se-
quence π, such that π is a valid path in the projection of
the planning task Π onto C ∪ L. A decoupled state corre-
sponds to an end state of such a global action sequence. The
main advantage over standard search originates from a de-
coupled state being able to represent exponentially many ex-
plicit states, avoiding their enumeration. A decoupled state
can “contain” many explicit states, because by instantiating
the center with a global action sequence, the leaf factors are
conditionally independent. Thus, the more leaves in the fac-
toring, the more explicit states can potentially be represented
by a single decoupled state.

Because decouples states represent sets of explicit states,
exact duplicate checking is less effective in decoupled
search. We employ dominance pruning instead, which we
describe next.

Decoupled Dominance Pruning
Dominance pruning (Torralba et al. 2016) can be generalized
to decoupled search such that decoupled states that are dom-
inated by other – already generated – states can be safely dis-
carded. We only deploy a very lightweight pruning method,
namely frontier pruning. The standard way of performing
duplicate checking in decoupled search can already detect
certain forms of dominance, in particular if two decoupled
states have the same center state and all leaf states reachable
in one state are also reachable in the other. Frontier prun-
ing improves this by only comparing a subset of the reached



leaf states, those that can possibly make so far unreached
leaf states available. It has originally been developed for op-
timal planning, but can be easily adapted to become more
efficient, when optimal solutions do not matter, by replacing
the real cost of reaching a leaf state by 0, if a state has been
reached at any cost.

Additionally, we also employ a leaf simulation, originally
proposed by Torralba and Kissmann (2015), to remove irrel-
evant leaf states and leaf actions. In some domains, this can
tremendously reduce the size of the leaf state spaces.

The aforementioned techniques are only applicable if F
is a fork factoring. For all factorings, we employ the domi-
nance pruning enhancements introduced in Gnad (2021).

Implementation

Decoupled Search has been implemented as an extension
of Fast Downward (FD) (Helmert 2006). The implemen-
tation does not support conditional effects, derived predi-
cates, and axioms. By changing the low-level state repre-
sentation, many of FD’s built-in algorithms and functional-
ity can be used with only minor adaptations. Of particular
interest for DiSCO are greedy best-first search (GBFS) and
the hFF heuristic (Hoffmann and Nebel 2001). Search algo-
rithms and heuristics can be adapted to decoupled search us-
ing a compilation defined by Gnad and Hoffmann (2018).
We will use the following notation to describe our tech-
niques: the decoupled variant of search algorithm X is de-
noted DX. We denote fork (inverted-fork) factorings by F
(IF), and factorings generated using the LP-based algorithm
by LP. We impose a time limit of 30 seconds for the factor-
ing process. We restrict the size for the per-leaf domain-size
product to ensure that the leaf state spaces are reasonably
small and do not incur a prohibitive runtime overhead when
generating new decoupled states. We denote this size limit
by |Lmax| := maxL∈L Πv∈L|D(v)|, where D(v) denotes
the domain of variable v. If a fork factoring is detected, we
sometimes perform frontier dominance pruning, denoted FP
and reduce the size of the leaf state spaces removing irrele-
vant transitions and states (IP).

Partial Delete Relaxation with hCFF

The hCFF heuristic is an approach to partial delete relax-
ation. The partially relaxed plans must respect a given set
of conjunctions C, each representing a combination of facts
that must be achieved simultaneously (Hoffmann and Fickert
2015; Fickert, Hoffmann, and Steinmetz 2016). Whenever a
conjunction is a subset of the preconditions of an action, the
conjunction of these facts must be achieved instead of the
facts individually.

Consider the task illustrated below. The car has to move
from A to C. The car can only hold one unit of fuel, which
each drive action consumes, but can be refueled at any loca-
tion. Formally, there are STRIPS facts at(x) for the position
of the car and fuel to indicate if the car has fuel. Initially the
car is at location A and holds fuel.

A B C

A fully delete relaxed plan can ignore the fuel consump-
tion and just apply the drive actions from A to B and B to
C immediately after each other. The critical conjunction of
facts that is ignored here is that the car must be at B while
holding fuel before the second drive action can be executed.
This conjunction can not be achieved by any of the drive ac-
tions as they consume the fuel fact. A partially relaxed plan
generated by the hCFF heuristic respecting this conjunction
would have to add the refuel action before driving from B to
C, making the relaxed plan a real plan. In fact, with a suf-
ficiently large set of conjunctions C, all plans generated by
hCFF are real plans.

Online-Refinement Search Algorithms
The hCFF heuristic works best when the conjunctions are
generated online, ideally in a search algorithms specialized
for online refinement. One such algorithm is Refinement-HC
(RHC) (Fickert and Hoffmann 2017a, 2022), an extension of
enforced hill-climbing (EHC) (Hoffmann and Nebel 2001).
Like standard EHC, the algorithm progresses through itera-
tions of breadth-first search (BrFS) until a state s with lower
heuristic value is found; then search continues from there.
In RHC, these explorations are bounded by a fixed depth. If
a state s with lower heuristic value can not be found within
that bound, the heuristic is refined and the BrFS phase is
restarted. Thus, RHC escapes local minima through heuris-
tic refinement instead of brute-force search. A second exten-
sion to standard EHC are restarts from the initial state (with-
out resetting the heuristic) whenever the search is stuck in
a dead end. Due to the convergence of the partially relaxed
plans generated by hCFF to real plans, RHC is complete.

RHC has been extended to use incomplete novelty prun-
ing instead of a simple depth bound in the local exploration
phase (Fickert 2018; Fickert and Hoffmann 2022), similar
to a single iteration IW(k) of iterated width search (Lipovet-
zky and Geffner 2012). Another extension, RHC-SC, uses
relaxed subgoal counting (Lipovetzky and Geffner 2014) in
the local exploration, replacing expensive relaxed-plan com-
putations with cheap counting of achieved subgoals along
the relaxed plan (Fickert and Hoffmann 2022). Finally, this
idea can be transferred to greedy-best first search, resulting
in the online-refinement search algorithm GBFS-SCL (Fick-
ert 2020; Fickert and Hoffmann 2022).

Algorithms in DiSCO
In DiSCO, we use variants of both RHC-SC and GBFS-
SCL. The algorithms use incomplete-novelty pruning on
conjunction level, i.e., each local lookahead search prunes
states that do not contain at least one novel conjunction
among all states seen in this local exploration (not across
the overall search).

In the agile-track configuration, our planner includes a
novel variant hSC

add of the subgoal counting heuristic hSC that
is based on the hadd-values of the subgoals (extended to con-



junctions when used with hCFF). More specifically: the stan-
dard subgoal-counting heuristic hSC counts the number of
achieved subgoals along the path from some root state s
to current state s′; our hadd-variant sums up the hadd(s, g)-
values of subgoals g ⊆ s′ instead (only considering the cur-
rent state s′, not any other state along the path from s).

In the satisficing track, our last configuration is variant
of LAMA using a dual-queue of hCFF and a landmark-
counting heuristic (Porteous, Sebastia, and Hoffmann 2001;
Richter, Helmert, and Westphal 2008). The set of conjunc-
tions for the hCFF heuristic is initially generated to a fixed
size, and during search old conjunctions are periodically re-
placed by new ones to adapt to newly encountered states
(Fickert and Hoffmann 2017b). The anytime search starts
with GBFS and continues with incrementally decreasing
weights in weighted A∗, caching heuristic values across
these searches to reduce computational overhead.

All algorithms are implemented on top of FD (Helmert
2006). The hCFF-based algorithms are configured to stop
search whenever the partially relaxed plan is a real plan.

DiSCO on ADL Tasks
Neither the hCFF heuristic nor Decoupled Search support ad-
vanced features such as conditional effects or axioms. In-
stead of solely relying on the provided automatic translation
to STRIPS, we implemented variants of this portfolio that
are used if the Fast Downward translator detects such fea-
tures in the task.

Our ADL portfolios include a non-online-refinement vari-
ant of GBFS-SCL and, an old IPC classic, YAHSP (Vidal
2004, 2011). Both of these use the standard hFF heuristic
as implemented in Fast Downward, which has the necessary
support for ADL features. We also include a LAMA-style
configuration using a best-first search with an alternation
queue of hFF and a landmark-counting heuristic.

DiSCO Configurations
DiSCO combines the described techniques into a sequen-
tial portfolio. This section describes configuration details for
the individual tracks. In addition to the standard FD transla-
tor, we perform a relevance analysis based on h2 to sim-
plify the planning task prior to the search (Alcázar and Tor-
ralba 2015). The mutexes found in this process are also used
by the hCFF heuristic to reduce its computational overhead.
We use it only in the satisficing track with a time limit of 3
min, and only if the translator does not produce axioms. All
search algorithms are configured to use a dual-queue for pre-
ferred operators with the hFF or hCFF heuristic, the RHC-SC
configurations in the agile track use helpful actions pruning
instead.

In the satisficing track we start by ignoring the action
costs and re-introduce them upon finding the first plan. Costs
are ignored altogether in the agile track.

In the following sub-sections, we detail the configurations
employed in each competition track. We provide the search
configurations, as well as the time each of the components
is allotted (in seconds).

Satisficing Track
The portfolio configurations for the satisficing track are
shown in Figures 1 (STRIPS) and 2 (ADL). Only the fi-
nal configuration uses action costs, all others use unit action
costs.

Timeout (s) Search Heuristics Notes
50/50 DGBFS hFF IF, |Lmax| = 100k
50/0 DGBFS hFF F, |Lmax| = 100k, FP, IP

1000/180 GBFS-SCL hCFF hSC

600/0 DGBFS hFF LP, |Lmax| = 231 − 1
* GBFS/WA∗ hCFF/hLM

Figure 1: STRIPS portfolio configuration in the satisficing
track. Components are launched top to bottom. In the time-
out column, the first number indicates the timeout if no so-
lution is found yet, the second number indicates the timeout
if we seek to improve a previously found solution. The last
configuration runs until the solution is proved optimal or the
overall timeout is reached.

Timeout (s) Search Heuristics
720/720 GBFS-SCL hFF

480/0 YAHSP hFF

* GBFS/WA∗ hFF/hLM

Figure 2: ADL portfolio configuration in the satisficing
track, see Figure 1 for explanations.

For STRIPS planning tasks, DiSCO starts with two de-
coupled search configurations. The first one runs decoupled
search with an inverted-fork factoring, since these typically
perform better. The second component uses fork factorings.

After the initial decoupled search components, we run
GBFS-SCL with online refinement of the hCFF heuristic. If
that does not succeed, we try another iteration of decoupled
search using the LP-based factoring with the same search
configuration as before. The final phase is a LAMA-like any-
time search with GBFS and weighted A∗ using incremen-
tally lower weights, where the main difference to LAMA is
the use of hCFF instead of hFF and a cross-iteration cache of
heuristic values.

For ADL tasks, DiSCO uses GBFS-SCL with hFF, fol-
lowed by YAHSP and LAMA.

Agile Track
The portfolio configurations for the agile track are shown in
Figure 3 and 4. All configurations ignore action costs.

In the agile track, we use similar configurations to the
ones from the satisficing track with only small differences.
We add RHC-SC into the mix, and add another GBFS-SCL
configuration using hSC

add as a potentially greedier variant to
run in the beginning. For STRIPS tasks, we drop the LAMA-
like configuration as we don’t need to improve plans. Since
the time limit is much lower in the agile track, the time lim-
its of the individual components are reduced accordingly. In
both variants, we try several techniques using a very short



Timeout (s) Search Heuristics Notes
3 GBFS-SCL hCFF hSC

add
3 DGBFS hFF IF, |Lmax| = 100k
3 DGBFS hFF F, |Lmax| = 100k, FP, IP
3 RHC-SC hCFF hSC

add

90 GBFS-SCL hCFF hSC

120 DGBFS hFF LP, |Lmax| = 231 − 1
* RHC-SC hCFF hSC

Figure 3: STRIPS portfolio configuration in the agile track.
Components are launched top to bottom. The last configura-
tion runs until the overall timeout is reached.

Timeout (s) Search Heuristics Notes
2 GBFS-SCL hFF hSC

add
2 YAHSP hFF

2 GBFS hFF/hLM

120 GBFS-SCL hFF hSC

90 YAHSP hFF

* GBFS hFF/hLM

Figure 4: ADL portfolio configuration in the agile track, see
Figure 3 for explanations.

timeout to see if they solve the task very quickly. If that fails,
we give more time to a set of selected configurations.

Post-Competition Analysis
We analyzed the competition results by investigating the log
files that have been provided by the organizers. Table 1 sum-
marizes our findings in a per-domain analysis for all com-
petition domains in both tracks, agile (left) and satisficing
(right). The first column in each half, F , shows the number
of instances in which a factoring was detected, so decou-
pled search was in play. A first observation is that there are
only three domains, quantum-layout, recharging-robots, and
ricochet-robots, in which decoupled search can actually be
performed. This is a quite low number compared to previous
IPCs, so the results are dominated by explicit-state search.

The table shows detailed coverage results, distinguishing
the components of each portfolio. We show, from left to
right, the components in their order of execution for every
portfolio. Hence, for example the first “SCL” column in the
STRIPS portfolio of the agile track corresponds to GBFS-
SCL with hCFF using hSC

add (cf. Figure 3). We indicate the
decoupled-search configurations by the factoring they use,
F, IF, LP, and use LA as an acronym for the LAMA-like con-
figurations, adding a superscript “C” if hCFF is used instead
of the default hFF.

In the agile track, the important components are the vari-
ants of GBFS-SCL, contributing 53 instances in the STRIPS
portfolio, and 13 in ADL. In ADL, the YAHSP component
solved the highest number of instances (31). In the satis-
ficing track, decoupled search with fork factoring (F), and
again GBFS-SCL with hCFF performed strong, with a cov-
erage of 12, respectively 65. In the ADL portfolio, GBFS-
SCL and YAHSP contributed significantly to coverage, with
17 respectively 30 instances. We remark that, in rubiks-cube,

since the “norm” version of the domain has conditional ef-
fects, we invoked our ADL portfolio for all instances.

Conclusion
DiSCO combines a set of powerful planning techniques into
a sequential portfolio. This portfolio is designed in a way
that quick-to-terminate methods, like decoupled search are
applied first, to find a plan as fast as possible. More search-
heavy algorithms like the online-refining hCFF heuristic are
executed later, in case the other methods fail. We augment
our techniques with recently introduced extensions like nov-
elty pruning to further spread the range of techniques.
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