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1 Linköping University, Sweden
2 Aalborg University, Denmark

3 Bar-Ilan University, Israel
daniel.gnad@liu.se, alto@cs.aau.dk, alexander.shleyfman@biu.ac.il

Abstract

DecStar extends Fast Downward by Decoupled state space
search, a technique that exploits the independence between
components of a planning task to reduce the size of the
state-space representation. Partitioning the state variables into
components, such that the interaction between these takes the
form of a Star topology, decoupled search only searches over
action sequences affecting the center component of the topol-
ogy, and enumerates reachable assignments to each leaf com-
ponent separately. This can lead to an exponential reduction
of the search-space representation. It is not always easy to
find a partitioning for a given planning task, though, so we
introduce a fallback option which runs explicit-state search
whenever no (good) partitioning could be found.

General Overview
Decoupled search reduces the representation size of search
spaces by exploiting the structure of the problem within the
search (Gnad and Hoffmann 2015; Gnad, Hoffmann, and
Domshlak 2015; Gnad and Hoffmann 2018). The size of the
decoupled state space can be exponentially smaller than that
of the explicit state space, which decoupled search achieves
by partitioning the task into several components, called fac-
tors, trying to identify a star topology with a single center
factor that interacts with multiple leaf factors. By enforcing
this structure, and thereby restricting the dependencies be-
tween the components, decoupled search has proven to be
very efficient and competitive with state-of-the-art planners.

The performance of decoupled search is highly influenced
by the outcome of the factoring process, i. e., the process of
partitioning the state variables. Just, how to find a good fac-
toring, and what qualifies a factoring as being good? These
questions have been addressed by Gnad, Poser, and Hoff-
mann (2017); Schmitt, Gnad, and Hoffmann (2019); Gnad,
Torralba, and Fišer (2022), who devised algorithms that can
detect star topologies on a wide range of planning domains.
Still, the proposed algorithms can fail to find a factoring,
or succeed, but return a factoring with undesired properties,
e. g., large leaf components that incur a prohibitive runtime
overhead when generating new search states. In this case, we
simply run explicit-state search instead.

Decoupled search is orthogonal to other known state-
space reduction methods, such as partial-order reduction
(POR), symmetry breaking, and dominance pruning. Given

this orthogonality, decoupled search can and has been com-
bined with these techniques, namely with strong stubborn
sets pruning (Gnad, Wehrle, and Hoffmann 2016; Gnad,
Hoffmann, and Wehrle 2019), symmetry breaking (Gnad
et al. 2017), and dominance pruning (Torralba et al. 2016).
POR via strong stubborn sets is a technique that is well-
known in explicit-state search and originates from the model
checking community (Valmari 1989; Alkhazraji et al. 2012;
Wehrle and Helmert 2012, 2014). Symmetry breaking is
a widely known approach across many areas of computer
science (Starke 1991; Emerson and Sistla 1996; Fox and
Long 1999; Rintanen 2003; Pochter, Zohar, and Rosen-
schein 2011; Domshlak, Katz, and Shleyfman 2012). Dom-
inance pruning identifies states that can be safely discarded,
without affecting completeness (and optimality) (Torralba
and Hoffmann 2015; Torralba 2017). We use the dominance
pruning extensions introduced in Gnad (2021) in addition.

We extend the standard preprocessor of Fast Downward
with the h2-based task simplification by Alcázar and Tor-
ralba (2015), which removes irrelevant and unreachable
facts and actions from the task.

Implementation & Configurations
Decoupled Search has been implemented as an extension of
the Fast Downward (FD) planning system (Helmert 2006).
By changing the low-level state representation, many of
FD’s built-in algorithms and functionality can be used with
only minor adaptations. We perform decoupled search like
introduced by Gnad and Hoffmann (2018), using the im-
proved fork and inverted-fork factorings from Gnad, Poser,
and Hoffmann (2017), as well as the linear-programming
(LP) based bM80s factoring method from Gnad, Torralba,
and Fišer (2022). The factoring process is given a time
limit of 30 seconds. After FD’s translator component fin-
ishes, we perform a relevance analysis based on h2 to elim-
inate actions and simplify the planning task prior to the
search (Alcázar and Torralba 2015).

Decoupled search is the main component of our planner.
However, as outlined before, our factoring strategies are not
guaranteed to find good task decompositions. Thus, in that
case we run explicit-state search as fallback method. Our
implementation of decoupled search does not support con-
ditional effects, so we also fall back to explicit-state search
in their presence. More advances PDDL features such as de-



Timeout (s) Search Heuristics Notes
300 ADA* hLM-cut F, CF, IP, SSS
800 DA* hLM-cut LP, SSS, OSS
300 A* hLM-cut SSS, OSS
400 A* blind -

Figure 1: Portfolio configuration in the optimal track. Com-
ponents are launched top to bottom.

Timeout (s) Search Heuristics Notes
60 DGBFS hFF IF
60 DGBFS hFF F, CF, IP

120 DGBFS hFF OSS
60 GBFS hFF -

Figure 2: Portfolio configuration in the agile track. Compo-
nents are launched top to bottom.

rived predicates or axioms are not supported by the planner.

Optimal Track In the optimal track, we start by doing the
h2-based relevant analysis for up to 4 minutes. After that,
we run a sequential portfolio as specified in Figure 1.

We start with Anytime Decoupled A∗ using a fork fac-
toring, the hLM-cut heuristic (Helmert and Domshlak 2009),
cost-frontier pruning (CF) and irrelevance pruning (IP) in
the leaf state spaces (Torralba et al. 2016), and do partial-
order reduction using strong stubborn sets (SSS) (Gnad,
Hoffmann, and Wehrle 2019). We disable the stubborn-sets
pruning if less than 30% of the actions have been pruned
after 1000 state expansions. For the factoring, we impose a
maximum on the domain-size product of variables in a leaf
of Lmax = 106.

The second component uses decoupled A∗ with the LP
factoring with Lmax = 231 − 1, the hLM-cut heuristic, strong
stubborn sets pruning, and decoupled orbit-space search
(OSS) (Gnad et al. 2017). We disable the stubborn-sets prun-
ing if less than 25% of the actions have been pruned after
1000 state expansions.

The third component is like the second, but performs
explicit-state search. The last component is a simple blind
search.

Agile Track In the agile track, we do not use the h2 pre-
processor. The portfolio as specified in Figure 2. All con-
figurations run Greedy Best-First Search (GBFS) with the
hFF heuristics (Hoffmann and Nebel 2001) and preferred-
operator pruning using a dual-queue approach (PO) (Richter
and Helmert 2009).

The first configuration uses an inverted-fork factoring
with Lmax = 104; the second a fork factoring with Lmax =
104, cost-frontier pruning and irrelevance pruning; the third
config uses the LP-factorings with Lmax = 231 − 1, and
orbit-space search. The last component is an explicit-state
search.

Satisficing Track In the satisficing track, we run the h2

preprocessor for 2 minutes. The portfolio as specified in Fig-
ure 3. All but the last configurations run GBFS with the hFF

Timeout (s) Search Heuristics Notes
300 DGBFS hFF IF
300 DGBFS hFF F, CF, IP
800 DGBFS hFF OSS
400 GBFS hFF -

Figure 3: Portfolio configuration in the satisficing track.
Components are launched top to bottom.

heuristics and preferred-operator pruning. The last configu-
ration is a standard LAMA (Richter and Westphal 2010).

The first three configurations run decoupled search in the
same way as the agile planner configuration. The only dif-
ference is that we use Lmax = 105 for the fork and inverted-
fork factorings.
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