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Abstract

We present SymBD, an entry to the optimal track of the Inter-
national Planning Competition IPC’23. SymBD is a baseline
running symbolic bidirectional blind search.

Introduction
Symbolic search (McMillan 1993) is a technique for state-
space exploration that leverages the efficient representation
of sets of states as Binary Decision Diagrams (Bryant 1986).
This is a technique with a long history of success in opti-
mal planning (Edelkamp and Helmert 2001; Jensen, Veloso,
and Bryant 2008; Edelkamp and Kissmann 2011; Kissmann
2012; Edelkamp, Kissmann, and Torralba 2015; Torralba
et al. 2017). The purpose of this planner is to represent this
line of research in the IPC’23.

SymBD should not be taken as the state-of-the-art sym-
bolic search planner, so the results of SymBD at the com-
petition are not fully representative of the capabilities of
these techniques. Rather, it should be taken as a baseline of
what a relatively simple implementation of symbolic search
with BDDs can accomplish. In fact, SymBD was already
used in IPC’18 as a baseline. The current state of the art for
classical planning using symbolic search with BDDs is, up
to our knowledge, symbolic search with operator-potential
heuristics (Fišer, Torralba, and Hoffmann 2022a,b), using
a forward informed search with potential heuristics (Fišer,
Horčı́k, and Komenda 2020) and backward blind search.
For readers interested in planners capable of supporting ad-
vanced PDDL features and beyond, such as axioms/derived
predicates (Thiébaux, Hoffmann, and Nebel 2005), state-
dependent action costs (Speck et al. 2021), or top-K plan-
ning, Symk is the planner of choice (Speck et al. 2019;
Speck, Mattmüller, and Nebel 2020; Speck 2022, 2023).

SymBD: Symbolic Bidirectional Blind Search
SymBD is a re-implementation of the SymBA∗ plan-
ner (Torralba et al. 2014), which won the optimal-track of
IPC’14. The focus on the re-implementation was not on
improving performance, but rather to simplify the code.
SymBA∗ used symbolic bidirectional blind search until the
search could not be continued, and then used abstraction
heuristics to continue the search at an abstract level in or-
der to identify which parts of the current frontier were most

promising (Torralba, Linares López, and Borrajo 2016). In-
stead SymBD continues the symbolic bidirectional blind
search until a timeout is reached, without trying additional
searches at the abstract level. While this reduces the perfor-
mance slightly, is a simpler approach and easier to extend in
different ways.

SymBD is implemented on top of the Fast Downward
Planning System (Helmert 2006), and uses the h2 prepro-
cessor to remove actions and simplify the planning task, and
compute mutexes that are used to enhance symbolic back-
ward search. We use the implementation of symbolic bidi-
rectional search described by Torralba et al. (2017), using
several enhancements such as optimized BDD variable or-
dering (Kissmann and Edelkamp 2011), disjunctive parti-
tioning of the transition relation BDDs (Torralba, Edelkamp,
and Kissmann 2013), and pruning using mutexes (Torralba
and Alcázar 2013).

Conclusion
SymBD is an efficient implementation of symbolic bidirec-
tional blind search, which leverages BDDs to perform search
efficiently. The purpose of this planner is to represent what
symbolic search planners are capable of even without using
heuristics.
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Torralba, Á.; Alcázar, V.; Borrajo, D.; Kissmann, P.; and
Edelkamp, S. 2014. SymBA*: A Symbolic Bidirectional
A* Planner. In Eighth International Planning Competition
(IPC-8): Planner Abstracts, 105–109.
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