
FTSPlan: Task Reformulation via Merge-and-Shrink

Álvaro Torralba1, Silvan Sievers2, Rasmus G. Tollund1, Kristian Ø. Nielsen1

1 Aalborg University, Denmark
2 University of Basel, Switzerland

alto@cs.aau.dk, silvan.sievers@unibas.ch, rasmusgtollund@gmail.com, kristianodum@gmail.com

Abstract
We present FTSPlan, an entry to the optimal and agile tracks
of the International Planning Competition 2023. FTS plan
represents the planning task as a set of (labelled) transition
systems, allowing for powerful task reformulation methods
using the merge-and-shrink framework.

Introduction
The core idea of FTSPlan plan is to apply the merge-and-
shrink framework (Sievers and Helmert 2021) for task refor-
mulation, representing the planning task as a set of (labelled)
transition systems and applying a series of task transforma-
tions before starting the search (Torralba and Sievers 2019).

The merge-and-shrink framework, inspired by previous
work in model-checking (Dräger, Finkbeiner, and Podelski
2006, 2009), represents the planning task as a set of labelled
transition systems, called factored transition system (FTS).
It iteratively applies transformations of that FTS, such as,
e.g., the name giving merging and shrinking, until obtaining
a single transition system which is an abstraction of the orig-
inal planning task (Helmert et al. 2014; Sievers and Helmert
2021). In general, the merge-and-shrink framework offers a
theory of transformations that can be applied to a planning
task in this FTS representation and what desirable properties
the resulting task has (Sievers and Helmert 2021). Within
that view, merge-and-shrink heuristics use transformations
that ensure the final result to induce an admissible heuristic,
even if the abstract plan has no relation to any plan in the
original task.

By restricting the transformations that can be used, and
storing sufficient information on each step, FTSPlan can en-
sure that any plan of the transformed task can be mapped
back into a plan for the original task (Torralba and Siev-
ers 2019). Therefore, if by applying sub-sequent transfor-
mations the process concludes in a single transition system,
a plan can be directly extracted. However, typically this re-
quires too much time and memory to be computed, so the
process is stopped earlier, obtaining a task representd as a set
of transition systems. Still, the reformulated task may be eas-
ier to solve than the original task as each intermediate trans-
formation can have potential benefits. For example, bisim-
ulation shrinking (Nissim, Hoffmann, and Helmert 2011)
can reduce the amount of states, e.g., by reducing equivalen-
t/symmetric states to a single one. Label reduction (Sievers,

Wehrle, and Helmert 2014) can represent the task more com-
pactly using fewer labels. We can also leverage dominance
analysis techniques (Torralba and Hoffmann 2015; Torralba
2017) to prune irrelevant and/or redundant transitions (Tor-
ralba and Kissmann 2015), such that a plan is still guaran-
teed to remain. Combined with pruning of unreachable and
dead-end states (Sievers and Helmert 2021), this can greatly
simplify the planning task in some domains.

FTSPlan
FTSPlan is implemented on top of the Fast Downward Plan-
ning System (Helmert 2006), using an adaptation of the ex-
isting implementation of the merge-and-shrink framework
(Sievers 2018).

Task Representation
The input planning task is specified in PDDL (McDermott
et al. 1998) and is first converted into finite-domain rep-
resentation (FDR) using the translator component of Fast
Downward (Helmert 2009). It is then simplified by remov-
ing actions with the h2 preprocessor (Alcázar and Tor-
ralba 2015). Since FTSPlan (more precisely: the merge-and-
shrink implementation it is built on) does not support con-
ditional effects, we use a compilation that creates a copy of
each action for each effect condition (Nebel 2000), thus ob-
taining a planning task in SAS+ representation (Bäckström
and Nebel 1995). Even though this compilation is worst-case
exponential in the number of conditional effects, this typi-
cally scales well in domains with few conditional effects.

The first step of FTSPlan is to further translate the given
SAS+ task into the FTS task representation. An FTS plan-
ning task is represented as a factored transition systems,
which is a set of transition sytems T = {T1, . . . , Tn} with
a common set of labels L. This is directly induced by the
task in SAS+ representation: each SAS+ variable is repre-
sented by a transition system and each SAS+ action is rep-
resented by a label. This is done in such a way that the syn-
chronized product of all transition systems is the same as the
state space of the orginal SAS+ task.

From there on, FTSPlan works in two phases. First, it ap-
plies a task reformulation procedure to simplify the FTS task
as much as possible. Secondly, it uses a search algorithm to
find a plan to the reformulated task and reconstructs the plan
for the original task.

Task Reformulation
In the first phase, FTSPlan applies the merge-and-shrink
framework to reformulate the given FTS planning task. This
means to iteratively applies merge, shrink, prune, and label
reduction transformations until no more transformations can
be applied due to an imposed limit on the representation size
or a time limit is reached.

Merging The merge transformation replaces two transi-
tion systems Ti, Tj ∈ T by their synchronized product
Ti ⊗ Tj . This is an exact transformation, i.e., it preserves
the all path costs in the transformed FTS task. Merging in-
creases the size of the task representation because the size
of the product is quadratic |Ti ⊗ Tj | = O(|Ti||Tj |). By it-
self, this may be a harmful reformulation in terms of search
time, but this can enable further shrinking, label reduction,
and pruning transformations leading to a net benefit. There-
fore, we apply merge conservatively, only allowing to merge
two transition systems if their product has fewer than 1000
states. To decide which two transition systems to merge, we
use the score-based MIASM strategy (Sievers, Wehrle, and
Helmert 2016).

Shrinking The shrink transformation replaces a transition
system Ti by an abstraction thereof, where two or more
states are reduced to a single one. This reduces both the size
of the task representation, as well as the state space; so it is
always beneficial. However, to ensure that the plan can be
reconstructed, only certain shrink strategies can be applied.

The shrink strategy differs depending on whether we are
dealing with optimal or satisficing/agile planning. For opti-
mal planning, we use bisimulation shrinking without a limit
on the number of states, which guarantees to preserve the
cost of all plans (Nissim, Hoffmann, and Helmert 2011) and
as such is an exact transformation. For agile planning, we
use weak bisimulation shrinking (Hoffmann, Kissmann, and
Torralba 2014), which achieves larger size reductions than
full bisimulation while ensuring that a (non necessarily op-
timal) plan can be reconstructed.

Label Reduction Label reduction applies an abstraction
on the label set of the factored transition system, thus replac-
ing certain labels by a common (new) one (Sievers, Wehrle,
and Helmert 2014). There are polynomial-time computable
conditions under which this can be done in a plan-preserving
way, i.e., as an exact transformation. The resulting task rep-
resentation is slightly smaller, but the main advantage is that
label reduction enables larger reductions with bisimulation
shrinking.

Pruning Pruning removes states and/or transitions if they
are unreachable from the initial state and/or dead-ends. This
is an exact transformation as long as we are only interested
in the reachable and relevant part of the state space.

Search Algorithms
After reformulating the FTS task in the first phase, in the
second phase, FTSPlan could in principle use any algorithm
to compute a plan for the transformed task, mapping back
the plan to a plan for the original task using stored infor-
mation about each transformation step applied during task

reformulation. A practical difficulty, however, is that most
planning algorithms are not defined for tasks in the FTS rep-
resentation.

As the FTS representation is slightly more expressive than
FDR (e.g., it can directly represent disjunctive precondi-
tions and/or conditional effects that depend on only one fac-
tor), planning algorithms and heuristics need to be slightly
adapted to use this representation. In our original work (Tor-
ralba and Sievers 2019), we already show how to perform
explicit-state search using several heuristics: merge-and-
shrink (Sievers and Helmert 2021), hmax(Bonet and Geffner
2001), and FF (Hoffmann and Nebel 2001). Since then, we
also extended the planner to support symbolic bidirectional
search (Torralba et al. 2017).

We use different search algorithms for optimal and satis-
ficing/agile planning.

A∗with Merge-and-Shink heuristics For the optimal set-
ting, we use A∗with the merge-and-shink heuristic. As
merge strategy, we use score-based MIASM (Sievers,
Wehrle, and Helmert 2016). As shrink strategy, we use
bisimulation shrinking (Nissim, Hoffmann, and Helmert
2011) with a limit of 50 000 abstract states. We further use
exact label reduction (Sievers, Wehrle, and Helmert 2014)
and pruning (Sievers and Helmert 2021) of all unreachable
and irrelevant states.

Symbolic Bidirectional Search with BDDs We use the
original implementation (Torralba and Alcázar 2013; Tor-
ralba et al. 2017), and adapt the creation of the BDDs rep-
resenting the initial state, goal, and the transition relation to
take as input the task in FTS representation. The BDD rep-
resentation is akin to the one used for SAS+ planning tasks,
where each transition system Ti ∈ T corresponds to a finite-
domain variable. Thus, each state si ∈ Ti would correspond
to a value of a variable and is represented within the BDDs
as a binary string ⟨si⟩.

The initial state and goal are straightforward to construct,
as each transition system can be interpreted as a variable
with one initial state value and one or more goal values. For
example, the goal BDD can be constructed as the following
expression ∧

Ti∈T

∨
si∈Ti,s|=G

⟨si⟩

For the transition relation, we construct a BDD per label l:

TRl =
∧

Ti∈T

∨
si

l−→s′i∈Ti

⟨si⟩ ∧ ⟨s′i⟩

Such BDDs are always of polynomial size in the size of
the FTS representation, as long as BDD variables represent-
ing ⟨si⟩ and ⟨s′i⟩ are contiguous in the variable ordering.

Once the BDDs for the initial state, goal, and transition
relation BDDs are constructed, the rest of the algorithm and
implementation can be directly reused (Torralba et al. 2017).
An important difference, however, is that we do not have h2

mutexes available, so we do not leverage them during the
search as done by the original symbolic bidirectional search
implementation (Torralba and Alcázar 2013; Torralba et al.

2017). The reason is that we apply reformulation methods to
the task representation (e.g. by merging multiple variables
into the same factor and/or shrinking values of one of the
factors), so mutexes obtained by h2 on the orignal task can-
not be directly applied to search in the reformulated task.

Lazy Greedy Best-first Search with the FF heuristic
For the satisficing/agile setting, we use greedy best-first
search, which explores the state space by exploring first
those states with lowest heuristic value (i.e., estimated as
closest to the goal by the heuristic). The search uses lazy
evaluation and preferred operators (Richter and Helmert
2009).

As heuristic, we use the popular FF heuristic (Hoffmann
and Nebel 2001), which is based on computing a delete-
relaxed solution. To compute the FF heuristic, we use the
procedure detailed by Torralba and Sievers (2019), which
can be interpreted as computing an hypergraph from the FTS
representation (Steinmetz and Torralba 2019) to extract the
relaxed plan in the same way as the implementation of the
FF heuristic in Fast Downward (Helmert 2006).

While this is not a state-of-the-art configuration, the plan-
ner has not been extended to support other heuristics yet
such as the landmark heuristic used by LAMA (Richter and
Westphal 2010).

Conclusion
We present FTSPlan, a planner based on reformulating the
planning task into FTS task representation. While the search
algorithms currently implemented in the planner are slightly
inferior to the state of the art, FTSPlan aims to overcome
this limitation by simplifying the planning task before the
search starts. Future work will consider implementing other
modern heuristics and/or search strategies in the planner.

References
Alcázar, V.; and Torralba, Á. 2015. A Reminder about the
Importance of Computing and Exploiting Invariants in Plan-
ning. In Brafman, R.; Domshlak, C.; Haslum, P.; and Zilber-
stein, S., eds., Proceedings of the Twenty-Fifth International
Conference on Automated Planning and Scheduling (ICAPS
2015), 2–6. AAAI Press.
Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Computational Intelligence, 11(4): 625–
655.
Bonet, B.; and Geffner, H. 2001. Planning as Heuristic
Search. Artificial Intelligence, 129(1): 5–33.
Dräger, K.; Finkbeiner, B.; and Podelski, A. 2006. Directed
Model Checking with Distance-Preserving Abstractions. In
Valmari, A., ed., Proceedings of the 13th International SPIN
Workshop (SPIN 2006), volume 3925 of Lecture Notes in
Computer Science, 19–34. Springer-Verlag.
Dräger, K.; Finkbeiner, B.; and Podelski, A. 2009. Directed
model checking with distance-preserving abstractions. In-
ternational Journal on Software Tools for Technology Trans-
fer, 11(1): 27–37.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research, 26: 191–246.

Helmert, M. 2009. Concise Finite-Domain Representations
for PDDL Planning Tasks. Artificial Intelligence, 173: 503–
535.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R. 2014.
Merge-and-Shrink Abstraction: A Method for Generating
Lower Bounds in Factored State Spaces. Journal of the
ACM, 61(3): 16:1–63.
Hoffmann, J.; Kissmann, P.; and Torralba, Á. 2014. “Dis-
tance”? Who Cares? Tailoring Merge-and-Shrink Heuris-
tics to Detect Unsolvability. In Schaub, T.; Friedrich, G.;
and O’Sullivan, B., eds., Proceedings of the 21st European
Conference on Artificial Intelligence (ECAI 2014), 441–446.
IOS Press.
Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research, 14: 253–302.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL
– The Planning Domain Definition Language – Version
1.2. Technical Report CVC TR-98-003/DCS TR-1165, Yale
Center for Computational Vision and Control, Yale Univer-
sity.
Nebel, B. 2000. On the Compilability and Expressive Power
of Propositional Planning Formalisms. Journal of Artificial
Intelligence Research, 12: 271–315.
Nissim, R.; Hoffmann, J.; and Helmert, M. 2011. Comput-
ing Perfect Heuristics in Polynomial Time: On Bisimulation
and Merge-and-Shrink Abstraction in Optimal Planning. In
Walsh, T., ed., Proceedings of the 22nd International Joint
Conference on Artificial Intelligence (IJCAI 2011), 1983–
1990. AAAI Press.
Richter, S.; and Helmert, M. 2009. Preferred Operators and
Deferred Evaluation in Satisficing Planning. In Gerevini, A.;
Howe, A.; Cesta, A.; and Refanidis, I., eds., Proceedings
of the Nineteenth International Conference on Automated
Planning and Scheduling (ICAPS 2009), 273–280. AAAI
Press.
Richter, S.; and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks.
Journal of Artificial Intelligence Research, 39: 127–177.
Sievers, S. 2018. Merge-and-Shrink Heuristics for Classical
Planning: Efficient Implementation and Partial Abstractions.
In Bulitko, V.; and Storandt, S., eds., Proceedings of the 11th
Annual Symposium on Combinatorial Search (SoCS 2018),
90–98. AAAI Press.
Sievers, S.; and Helmert, M. 2021. Merge-and-Shrink: A
Compositional Theory of Transformations of Factored Tran-
sition Systems. Journal of Artificial Intelligence Research,
71: 781–883.
Sievers, S.; Wehrle, M.; and Helmert, M. 2014. Generalized
Label Reduction for Merge-and-Shrink Heuristics. In Brod-
ley, C. E.; and Stone, P., eds., Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence (AAAI
2014), 2358–2366. AAAI Press.
Sievers, S.; Wehrle, M.; and Helmert, M. 2016. An Analy-
sis of Merge Strategies for Merge-and-Shrink Heuristics. In

Coles, A.; Coles, A.; Edelkamp, S.; Magazzeni, D.; and San-
ner, S., eds., Proceedings of the Twenty-Sixth International
Conference on Automated Planning and Scheduling (ICAPS
2016), 294–298. AAAI Press.
Steinmetz, M.; and Torralba, Á. 2019. Bridging the Gap be-
tween Abstractions and Critical-Path Heuristics via Hyper-
graphs. In Lipovetzky, N.; Onaindia, E.; and Smith, D. E.,
eds., Proceedings of the Twenty-Ninth International Confer-
ence on Automated Planning and Scheduling (ICAPS 2019),
473–481. AAAI Press.
Torralba, Á. 2017. From Qualitative to Quantitative Domi-
nance Pruning for Optimal Planning. In Sierra, C., ed., Pro-
ceedings of the 26th International Joint Conference on Arti-
ficial Intelligence (IJCAI 2017), 4426–4432. IJCAI.
Torralba, Á.; and Alcázar, V. 2013. Constrained Symbolic
Search: On Mutexes, BDD Minimization and More. In
Helmert, M.; and Röger, G., eds., Proceedings of the Sixth
Annual Symposium on Combinatorial Search (SoCS 2013),
175–183. AAAI Press.
Torralba, Á.; Alcázar, V.; Kissmann, P.; and Edelkamp, S.
2017. Efficient Symbolic Search for Cost-optimal Planning.
Artificial Intelligence, 242: 52–79.
Torralba, Á.; and Hoffmann, J. 2015. Simulation-Based Ad-
missible Dominance Pruning. In Yang, Q.; and Wooldridge,
M., eds., Proceedings of the 24th International Joint Con-
ference on Artificial Intelligence (IJCAI 2015), 1689–1695.
AAAI Press.
Torralba, Á.; and Kissmann, P. 2015. Focusing on What
Really Matters: Irrelevance Pruning in Merge-and-Shrink.
In Lelis, L.; and Stern, R., eds., Proceedings of the Eighth
Annual Symposium on Combinatorial Search (SoCS 2015),
122–130. AAAI Press.
Torralba, Á.; and Sievers, S. 2019. Merge-and-Shrink Task
Reformulation for Classical Planning. In Kraus, S., ed., Pro-
ceedings of the 28th International Joint Conference on Arti-
ficial Intelligence (IJCAI 2019), 5644–5652. IJCAI.

